
School of Chemistry & Physics

3-D Magnetotelluric inversion using Hadoop
MapReduce

by

Jake Brown

Supervisors:

A/Prof. Murray Hamilton, Dr. J. Craig Mudge

A thesis submitted towards the degree of

Bachelor of Science (Honours) - High Performance Computational Physics

at

The Faculty of Sciences

The University of Adelaide

November, 2012





This work contains no material which has been accepted for the award of any other degree

or diploma in any University or other teritary institution and, to the best of my knowledge

and belief, contains no material previouusly published or writen by another person, except

where due reference has been made in the text.

I give my consent to this copy of my thesis, when deposited in the University Library, being

available for loan and photocopying.

SIGNED: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DATE: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .





Abstract

As a geophysical imaging technique, magnetotellurics (MT) has shown great promise. Cur-

rently, the usefulness of the information we can extract from raw MT sensor data is limited

in two ways. First, prohibitive running times of inversion limit the ability to quickly obtain

useful data from on-site measurements. A parallel implementation somewhat overcomes this.

Second, the availability of computing resources limits the ability of geophysicists to run these

calculations on demand, without competing for time on existing high performance computing

(HPC) infrastructure.

The emergence of cloud computing provides convenient resources, available on demand,

and is ideally suited to problems which can be expressed in a trivially parallel manner.

Exploiting different levels of parallelism inherent in the MT method allows such problems to

be expressed in a trivially parallel structure named map-reduce, based on the fundamental

map and reduce operations from functional programming.

We have explored using an existing implementation 3D MT inversion, expressing this in

a map-reduce structure, and running it on an open source implementation of map-reduce

called Hadoop MapReduce.





i

Acknowledgements

First and foremost I would like to thank my supervisors Craig Mudge and Murray Hamilton

for their help and support throughout the year.

Additionally, I would like to acknowledge the assistance and expertise provided by mem-

bers of the Geophysics department at the University of Adelaide; including Graham Heinson

and in particular Stephan Thiel.

Finally, the assistance provided by Bradley Alexander has been of great help; and he has

been an interesting source of information for innovative research pathways.



ii



iii

Contents

1 Introduction 1

2 The magnetotelluric method 3

2.1 Geophysical exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Seismology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Gravitational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.3 Electromagnetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Introduction to the magnetotelluric method . . . . . . . . . . . . . . . . . . . 4

2.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 MT theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Skin depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.3 Apparent resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.4 Forward modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.5 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 3D MT inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 3-D data-space Occam inversion: WSINV3DMT . . . . . . . . . . . . 10

2.5 Verification of the magnetotelluric method . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Joint inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Cloud computing 15

3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Layers of abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Big data and map-reduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Map-reduce computational model . . . . . . . . . . . . . . . . . . . . . 17

3.4 Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Hadoop in industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.2 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.3 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.4 Load balancing (speculative execution) . . . . . . . . . . . . . . . . . . 20

3.4.5 Hadoop usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



iv CONTENTS

4 C3L parallel implementation 23

4.0.6 Paralellisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.0.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.0.8 Web application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.0.9 Area for improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Initial code analysis 27

5.1 Inversion call-chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Forward modelling times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Hadoop implementation of 3D inversion 31

6.1 Class structure and Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1.1 MT Inversion Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1.2 Mappers and Reducers . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Technical details of implementation . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2.1 Mapper and reducer input and output . . . . . . . . . . . . . . . . . . 35

6.2.2 Issue 1: Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2.3 Issue 2: Executing Fortran code within Java . . . . . . . . . . . . . . . 36

6.3 Hadoop configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.4 Testing Hadoop implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 New data set: Carrapateena region 39

7.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.1.1 Station data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.1.2 Skin depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.2 Model file choice and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.2.1 Model 1: benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2.2 Model 2: decreasing surface coverage by block removal . . . . . . . . . 43

7.2.3 Model 3: increasing surface coverage by adding a block . . . . . . . . 43

7.2.4 Model 4: increasing surface coverage by scaling blocks . . . . . . . . . 43

7.3 Inversion analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.3.1 Model progression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.3.2 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 Conclusion 49

8.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A Glossary 51

A.1 Computer Science terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.2 Symbols and terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



CONTENTS v

B Amazon web services 55

B.1 EC2 instance types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B.1.1 Performance comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 56

C Field data: Paralana region (Run 7) 57

D Additional MT information 61

D.1 3-D MT inversion, literature review . . . . . . . . . . . . . . . . . . . . . . . . 61

D.2 Rules of thumb for model selection . . . . . . . . . . . . . . . . . . . . . . . . 62

E Hadoop configuration 63

F Fortran 77 65

F.1 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

F.2 Memory issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

F.3 Configuring the environment for ifort . . . . . . . . . . . . . . . . . . . . . . . 66



vi CONTENTS



1

Chapter 1

Introduction

Magnetotellurics is a valuable passive geophysical exploration technique for determining the

conductivity of materials below the surface. While data collection is relatively simple and

cheap, a computationally intensive ‘inversion’ process is required in order to extract the most

useful information from this recorded data. In practice, this can limit the practicality and

adoption of this technique by geophysicists; both in the field and in research.

The primary goal of cloud computing is to provide remote access to computing resources

on demand. This has the potential to provide easy, cheap and fast access to resources for

running 3D MT inversion, but several hurdles must first be overcome. To illustrate this, we

will look at the two main issues:

1. The long running time of 3D inversion is a prohibitive factor; cloud computing provides

access to resources, but to be able to utilize these fully and in a cost effective manner

we need to design our program to run in parallel across many machines. This presents

its own unique challenges.

2. 3D MT inversion should be implemented in such a way that geophysicists are able to

use it, without specialized computing skills or extensive training on the computers being

used.

Both of these issues have been the focus of a collaboration between Geophysics and

Computer Science at the University of Adelaide, and will be discussed in Chapter 4. They

have been somewhat resolved, but in a very restrictive manner. The inversion algorithm has

been successfully parallelized to address the first goal, and a web application was deployed

to manage submission of jobs, allocation of cloud resources, and viewing of results from

inversion.

Due to the huge variation in running time and memory requirements for different data-

sets, we may wish to select our computing resources to suit the problem at hand. This

might include utilizing multiple cores on a single high performance machine, a cluster of

high performance machines, or a cluster of standard desktop machines, colloquially known as

‘beige boxes’. Additionally, these resources may located locally, or we may wish to use the

virtual machines offered by one of the public cloud computing providers.

This is not possible with the current implementation without extensive modifications for

each use case, which requires a specialty knowledge.



2

The goal of our research is to improve this by implementing 3D inversion in such a way

that it is more portable across different types of hardware, without specialized knowledge of

parallel computing.

In Chapter 2 we shall discuss some motivation for the use of magnetotellurics when com-

pared with other geophysical exploration techniques. We will then introduce the required

mathematical background for the magnetotelluric method, and detail the forward modelling

process required to simulate the Earth’s electromagnetic response. We will then introduce

will the important concept of inversion, and the ‘3-D data-space Occam inversion’ algorithm

developed by W. Siripunvaraporn, and a freely available implementation of this called ‘WS-

INV3DMT’ which will be the basis for our research.

In Chapter 3 we shall introduce cloud computing in some detail. As outlined above, we

shall discuss the need for portability across different cloud providers and other infrastructure,

and the need for a parallel computing framework; which shall also be defined. We will then

introduce the map-reduce computational model, and Hadoop MapReduce as the framework

and open source implementation of map-reduce that we shall be using.

In Chapter 4, we detail the results from the collaboration between Geophysics and Com-

puter Science mentioned above. We then delve into the 3D inversion code package WS-

INV3DMT in Chapter 5, and analyse which parts of the code are the most computationally

demanding. This will act as some motivation towards our approach, but is also valuable for

suggesting directions for future research.

In Chapter 6 we detail the steps required to program our implementation of 3D inver-

sion, using the parallel computing framework Hadoop. The ability to run computationally

demanding Fortran code within the Hadoop framework, written in Java, is new, and much

of the information here could significantly benefit future endeavors to run distributed triv-

ially parallel computations in native/compiled languages within Hadoop. We then show the

results of this implementation from a technical perspective, essentially confirming that the

output is identical to the well tested serial implementation WSINV3DMT

In Chapter 7 we run the 3D inversion on Hadoop using a new data set. The data set chosen

is from the Carrapateena region in South Australia, and has been chosen because it presents

an opportunity to explore a data set that has not previously been inverted. We analyse this

data set using a variety of ‘models’ which determine the resolution of the final output, and

the associated running time. Previously, this kind of analysis using cloud computing services

would be at a significant cost, and would not have been viable. Due to being able to utilise

multiple cores on a single machine, we are now able to fully utilize available computational

power in order to run this calculation in the shortest possible time, and within a reasonable

budget.

In Chapter 8 we present our conclusion, and a discuss other ways Hadoop can be used to

improve 3D inversion. In particular, paper [2] shows that Evolutionary Computing methods

show great promise for 3D MT inversion. These methods are inherently parallelizable, and can

benefit from using Hadoop MapReduce; perhaps even more than the work we have examined

in this paper. We also discuss how our work can be used to run other computationally

intensive scientific calculations on Hadoop.



3

Chapter 2

The magnetotelluric method

In Section 2.1, we shall briefly explore the main techniques used in geophysical exploration.

Magnetotellurics (MT) will be introduced in Section 2.2, and we shall explore the advan-

tages and disadvantages of MT when compared to several other popular geophysical imaging

techniques. We will continue by examining the experimental set-up of a typical MT field

campaign.

Then, in Section 2.3 we shall outline the necessary theory underlying the MT method,

including initial data processing, and introduce the concept of MT inversion.

In 2.4 we will discuss 3-D MT inversion in further detail, introducing the ‘data-space

Occam inversion’. We will then introduce the important 3-D inversion code package WS-

INV3DMT, which will be the basis for our research.

Finally, in Section 2.5 we shall briefly discuss verification of the MT method; both in

general, and for given field campaigns. We shall also discuss a process known as joint-

inversion, which attempts to use other geophysical information in the MT inversion process,

and not simply for verification.

2.1 Geophysical exploration

Rocks and minerals below the surface vary in density, electrical conductivity, polarisablity,

acoustic wave propagation velocity and acoustic properties, among others. These variations

permit a wide range of imaging techniques to be used for determining subsurface structure

and details, and can be seen to belong to three main disciplines.

2.1.1 Seismology

Seismic waves are elastic, mechanical matter waves of propogating energy. The speed at

which they travel is determined by the acoustic impedance of the medium in which they are

traveling. At subsurface boundaries between mediums of different acoustic impedance, part

of the energy is reflected from the boundary, while part refracts and continues to propogate

through the new medium. Seismolological methods make use of both of these behaviours to

determine subsurface structure.

Reflection seismology is generally accepted to provide the best spatial resolution, and



4 2.2. INTRODUCTION TO THE MAGNETOTELLURIC METHOD

most information about the subsurface [6]. This an active seismological technique, meaning

an energy source or transmitter is required. At its simplest, reflection seismology involves

using controlled energy sources such as explosions and vibrations to generate seismic waves,

and measuring times taken for the reflected part of the wave to be detected at a number of

receivers at the surface. This information is used to reconstruct the subsurface structure in

terms of its acoustic impedance.

Active seismic imaging as above is largely confined to the crust and mantle lithosphere[22],

regions up to 120km deep. Passive seismology does not require a transmitter, and usually

exploits seismic energy from earthquakes, and is capable of imaging structure at a variety of

scales, from the shallow crust (5-75km) to the whole Earth[22].

2.1.2 Gravitational

Gravitational exploration is another passive technique. Equipment is used to measure the

local gravitational fields, and this information can be related to the density of the materials

below the surface. The spatial resolution here is usually poor in comparison to reflection

seismology; although it has the advantage of being passive - no expensive or environment-

disturbing energy sources are required.

2.1.3 Electromagnetic

Electromagnetic imaging encompasses any technique using electromagnetic radiation to image

the subsurface. These methods are primarily used to measure electrical conductivity and

polarization, and with some knowledge of different materials, other properties such as density

can be deduced from this. Magnetotellurics comes under this classification, and is the focus

of our research. Ground penetrating radar also comes under this classification, and is an

active technique, whereby energy in the microwave band (UHF/VHF frequencies) is emitted

into the earth from a transmitter, and detectors record the reflected signals at the surface.

2.2 Introduction to the magnetotelluric method

Magnetotellurics is in most cases1 a passive imaging technique; meaning, as with the passive

techniques mentioned above, that no power is used for generating source fields. Naturally

occuring, time varying electromagnetic fields penetrate the earth, with penetration depth

dependent on their frequency. These fields induce currents called ‘telluric’ and ‘eddy’ currents

in conductive materials below the surface. These currents generate secondary fields, and we

use the relationship between the E and B fields as measured at the surface, to determine the

subsurface resisitvity.

We shall now look at the experimental setup in Section 2.2.1, and the pre-processing of

data required after a field-survey.

1Controlled source electromagnetic is a notable exception



CHAPTER 2. THE MAGNETOTELLURIC METHOD 5

2.2.1 Experimental setup

Initial processing of field data

A typical experimental set-up is as shown in figure 2.1. The electric potential difference

between the N-S and E-W facing electrodes is usually on the order of millivolts, and is

measured by a simple voltmeter. The local magnetic field in those orthogonal directions is

measured by similarly oriented magnetic sensors 2, and is usually within the range of a few

nanoteslas, to a few hundred nanoteslas during periods of intense solar activity.

The raw data from the voltmeter and magnetic sensors is recorded with a sample rate of

1000Hz by a logging device. The logging device may be left to collect data over a period of

several days or weeks, so the internal clock is regularly calibrated via a gps link.

We then transform the data into the frequency domain, where it is represented as a linear

response function called the impedance tensor Z. In the absence of noise, and with precise

data, this may be written:

E = Z(ω)B (2.1)

where E and B are two-dimensional vectors containing the horizontal electric and mag-

netic field components at a specific site and frequency. Because the response is linear, the

power present at a particular frequency is not important, and the impedance tensor can be

normalized and made time-independent.

Field measurements contain noise, so in practice equation (2.1) does not hold exactly,

and it becomes necessary to use a statistical method to approximate the impedance tensor

and its uncetainty. We use a method called Bounded Influence Remote Reference Processing

(BIRRP), presented by Chave et al in [4]. BIRRP attempts to simultaneously limit the

influence of both ‘outliers’ (unusual electric field data) and ‘leverage points’ (unusual magnetic

field data) to produce a reliable magnetotelluric response function. Full details of this process

can be found in [4]; all data-sets that we encounter in this paper have already been processed

using this.

2In our case the magnetic sensors were induction coils, but fluxgate sensors are also used for longer period
electromagnetic fluctuations due to physical limitations of induction coil based sensors.



6 2.3. MT THEORY

Figure 2.1: Experimental set-up of equipment for measuring raw data.

2.3 MT theory

We will now detail some necessary background on the Physics behind magnetotellurics. At

the end of this section we shall briefly talk about inversion, but a detailed discussion of the

algorithms used will be saved for the next section.

2.3.1 Skin depth

The penetration depth of Transverse Electric (TE) and Transverse Magnetic (TM) mode

waves into a conductor is given by the simple skin depth equation from classical electrody-

namics:

κ = ω

√
εµ

2

√1 +

(
σ

εω

)2

− 1

1/2

(2.2)

Where σ is the conductivity, ε is the magnetic permittivity, ω is the angular frequency of the

electromagnetic radiation, and δ = 1
κ is the skin depth.

This means that EM fields are attenuated to a value of e−1 of their surface amplitude at

depth δ(T ). We make an approximation, and consider the skin depth to be the penetration

depth for electromagnetic radiation [24].

2.3.2 Sources

The magnetotelluric method makes the assumption of vertically incident TE and TM plane

waves. The plane wave assumption is important, as we assume a common source at all

detection stations.



CHAPTER 2. THE MAGNETOTELLURIC METHOD 7

Figure 2.2 outlines the frequencies commonly used in Magnetotellurics, with the corre-

sponding depth range and geological region. The terestrial sources mentioned usually take

the form of lightnight strikes. It is imporant that these lightning strikes are non local, in

order to avoid saturation of the detectors, and to satisfy the plane wave assumption. The

solar wind, consisting primarily of protons and electrons, interacts with the Earth’s magnetic

field, causing streams of charged partices to be deflected in opposite directions, establishing

an electric field. Variations in the intensity of the solar wind, as well as complex interac-

tions between the magnetosphere and ionosphere, generate fluctuations in this field, which

eventually becomes our source field.

103Hz 100Hz 10-3Hz 10-6Hz

35-410km160m-35km 410-660km

Core-mantle 
boundary

Mantle 
transition zone

Upper mantleMid-lower 
crust

Upper crust

Crust

D
e

a
d

 b
a

n
d

SolarTerrestrial

Source 

fields

Frequency

Region

Figure 2.2: Frequency range used in Magnetotellurics (the shaded region), with the cor-
responding skin depth, geological region, and magnetotelluric source location. Terrestrial
sources originate from the Earth. The lower frequency solar sources are primarily due to
interactions of the solar wind with the magnetosphere and ionosphere. The dead band indi-
cates the region of lower electromagnetic activity between the terrestrial and solar sources,
making it difficult to image this area.

2.3.3 Apparent resistivity

We can learn a lot from simple mathematical relationships between the impedance tensor and

its components. Apparent resistivity σa(ω) is a quantity defined as the average resistance

within an equivalent uniform half-space. We can determine the apparent resistivity from the

impedance tensor[33]:

σa(ω) =
µ

ω
|Z(ω)|2 (2.3)

The radiation has a finite penetration depth, as given by the skin depth (2.2), so we can

consider the half space to be the region between where the impedance tensor is measured,

and the skin depth. By definition, the apparent resistivity, calculated from the components

of the impedance tensor of a single frequency at the surface, does not give us any depth

resolution; it is simply the average resistivity within the region defined by the surface and

the skin depth.

In a MT survey, measurements at a discrete set of frequencies, with skin depths corre-

sponding to the depths we wish to examine, are extracted from the recorded measurements as

described above. Since different frequency components of Z can be used to examine details



8 2.3. MT THEORY

at different depths, we can use this information to generate a more useful ‘model’ of the

subsurface resistivity; our exact approach depends on the dimensionality of the problem.

2.3.4 Forward modelling

Forward modelling involves simulating the Earth’s electromagnetic response; but first we

must define a model.

In general, a model is some data structure containing a set of resistivity values which

describe the subsurface structure. The exact form of this model can further vary depending

on whether we wish to work with a one, two, or three dimensional representation.

Examples of one two and three dimensional models are given in D resistivity models are

given in Figure 2.3. For simlicity, these models are defined by a single set of values for block

size in each of the x,y,z directions; which means that the block size in one axis with respect

to the others is constant.

x

z

Surface

...

y

(a) 1-D model

x

z

...

y

(b) 2-D model

x

z

y

(c) 3-D model

Figure 2.3: Examples models of 1, 2 and 3 dimensions.

Forward modelling takes a model, and simulates the Earths electromagnetic response to

arrive at a theoretical impedance tensor defined at the surface. This is done independently

for each frequency ω.

For example, considering the one dimensional model in Figure 2.3a. Here we have a two

dimensional representation where the resistivity is constant in the horizontal direction, and is

made of a discrete set of layers of different resistivity in the vertical direction. We take that

model, and starting at the bottom layer, considering below this to be a uniform half space,

recursively calculate the earth’s electromagnetic response for each horizontal layer until we

arrive at the theoretical response function at the surface.

2.3.5 Inversion

The concept of forward modelling immediately suggests a simple algorithm for MT inversion,

which we detail briefly now.

We wish to find a model m that when forward modelled, produces a theoretical response,

matching our observed response to a precision defined by some misfit. We also wish the

model to satisfy some condition of smoothness, in order for it to be considered a realistic

representation of the subsurface geology. The goal of this smoothness is to ensure there are

not large differences in resistivity between neighbouring blocks in our model.



CHAPTER 2. THE MAGNETOTELLURIC METHOD 9

A simple algorithmic outline is shown in Algorithm 1.

Algorithm 1 Iterative MT inversion algorithm outline. The number of iterations should be
set to some reasonable number depending on estimated time for convergence. The ‘improve
model’ step will be dependendent on the algorithm implementation and dimensionality.

while number of iterations not exceeded do
Forward model to get the theoretical response ;
if misfit of response and smoothness of model satisfy stopping conditions then

end
else

improve model
end if

end while

We briefly detail some advantages and disadvantages of inversions in one, two, and three

dimensions:

1-D inversion In a 1-D inversion, we only consider variations in resistivity in the vertical

direction. The model describing the subsurface structure will be made of layers of varying

resistivity, in horizontal plane. This will only be considered when we wish to simplify some

examples.

2-D inversion 2-D inversion also allows for variation in the horiontal direction. There

are dangers in 2-D inversions being influenced by 3-D structures, as demonstrated with real

data in [24] and [19]. According to [27], ‘All studies indicate that if the data contains 3-D

structures, 2-D inversion can mislead an interpretation’.

However, 2-D inversion is much less computationally demanding than 3-D inversion, and

can be useful. According to [27], MT acquisitions are usually conducted along a profile, or

several profiles running parallel to each other. Then, prior to running the 2D inversion, an

analysis is carried out in order to determine which station data is consistent with a 2-D

interpretation. 2D inversion is then performed to yield the cross sectional profile.

Three dimensional inversion Three dimensional inversion is preferred over 2 dimensional

inversion, in order to adequately explain important features present in field data sets from

geologically complex regions. It solves the issues inherent in 2D inversion mentioned above;

however it is very computationally expensive, and not widely used for that reason. This is

the area that we wish to improve, and will be the focus of all of our research. We will discuss

this in more detail in the next section.

2.4 3D MT inversion

In this section we will examine 3-D inversion in more detail, and describe the inversion

algorithm that is the focus of our research.

Magnetotelluric inverse problems usually have many more model parameters than they

do data measurements. Data-space methods formulate the inverse problem in terms of the



10 2.4. 3D MT INVERSION

data, rather than the number of model parameters. Representing the problem in this way can

reduce both computational time and memory requirements, due to the smaller matrices that

must be stored and operated upon. We present a detailed summary of relevant theoretical

developments in 3-D inversion in Appendix D.1; interested readers should refer to this now.

Siripunvaraporn et al publish a 3-D Occam data-space approach in [30]. This has been

released in a Fortran code package named WSINV3DMT, and was made freely available to

the MT research community in 2006 [29]. Instructions for obtaining the code are available

in [26]; and this code is our focus. There are other 3-D inversion code packages available,

however we will save this discussion for Chapter 8, where we discuss directions for future

research.

2.4.1 3-D data-space Occam inversion: WSINV3DMT

We use a 3-D Occam inversion, with the transformation to data-space to make calculations

more efficient. This was published in [30], and we will explain the key parts here.

Occams inversion seeks the smoothest, or minimum norm, model subject to an appropriate

fit to the data [5]. So the norm of the model is representative of the smoothness parameter

discussed earlier. The root-mean-square of the pointwise difference between the response and

the forward modelled model is representative of the misfit; as is common in the literature,

we will simply refer to this as the RMS.

The inversion algorithm is detailed in Algorithm 2. The goal of each iteration is to find

the minimum norm model subject to a given RMS target. Stage 1 computes the expensive

sensitivity matrix and Cholesky decompositions required for Stage 2. Stage 2 happens in two

‘phases’; Phase I finds the model with the lowest RMS, and Phase II starts with this, and

perturbes this to find the model with the lowest norm. Phase I has the effect of achieving

a better fit to the data, and Phase II attempts to remove extraneous data resulting from

overfitting.

Norm and covariance

The model norm is defined as mTCm
−1m. The model covariance Cm required to calculate

this, is defined algorithmically inside the WSINV3DMT code and has not been modified in

our work. As can be seen in the code [26], and described in [25], it allows for a general

specification of prior information[25], taking into account the length scale (below), and other

parameters such as known physical structures. This allows the norm to be computed while

taking into account these details.

The data covariance matrix Cd is defined in a simlar manner, taking into account infor-

mation relaing to the reliability of station data. This allows the user to specify which stations

may produce less reliable information, due to interference, for example.

Smoothness and the τ parameter

We define a smoothing parameter τ , and a related model length scale. These parameters

impose restrictions on the model covariance matrix Cm which is used in updating our model,



CHAPTER 2. THE MAGNETOTELLURIC METHOD 11

Algorithm 2 Algorithm for the data-space Occam inversion implemented in WSINV3DMT.
Cd is the data covariance matrix, which acts as a weighting to lower the effect of data from
less reliable stations.
Initialise with an initial model guess m = m0, and input data d.

1. Forward model and compute RMS (misfit) from model

2. Start Outer loop iteration k:

Begin stage 1:

3.1 For i = 1 to Ns ×Nm ×Np

Call forward modelling F[mk] to form sensitivity matrix Jk,i for data i
End

3.2 Compute dk = d− F[mk] + Jk(mk −m0)

3.3 Compute Γ = Cd
−1/2JkCmJk

TCd
−1/2

Begin stage 2:

3.4 For various values of λ

3.4.1 Compute representer matrix

Rλ
k = [λI + Γλk ]

3.4.2 Use Cholesky decomposition to update trial model:

mλ
k+1 = CmJk

TCd
−1/2[Rλ

k ]−1Cd
−1/2dk + m0

3.4.3 Forward model and compute RMS (misfit) from model

3.4.4 if Phase I Once all λ have been tried, choose model with minimum RMS
and begin Phase II.

if Phase II Once all λ have been tried, choose model with minimum norm
and break loop.

End

3.5 Exit when misfit is less than desired level with minimum norm

End WSINV3D outer loop iteration



12 2.4. 3D MT INVERSION

as can be seen in Alogirithm 2. By way of this, the τ parameter and length scale implicitly

restrict the overall smoothness, and the relative smoothness of the model in each direction

(x,y,z), respectively. We supply these parameters at the start of the inversion, and they

remain fixed throughout the inversion.

We make a clear distinction between this τ parameter, and the model norm. The τ

parameter, and the associated length scale, act as a constraint on allowable models, restricting

large differences in resistivity between successive blocks (low smoothness) in each of the three

directions. The model norm is essentially a second objective function, along with primary

objective, RMS, and is an overall measure of the model smoothness.

Using a higher τ value can help avoid convergence to a local optimum; in many cases this

may be a model with a low RMS, but a low smoothness, indicating that it is not a geologically

useful model.

WSINV3DMT

An implementation of the algorithm described above is provided by W. Siripunvaraporn and

is freely available. This implementation is approximately 20, 000 lines of Fortran 77, and

while it produces reliable output, it does not run any calculations in parallel. This is what

we wish to improve. Most of the Fortran code will be left untouched in our implementation;

as will the input and output data formats, so it is worth explaining it here in some detail.

Firstly, note that each time forward modelling is applied, it is computed independently for

each frequency. Since this forward modelling is a dominant part of the calculation, running

these in parallel can speed up this serial algorithm significantly. This the approach taken by

C3L and discussed in Chapter 4.

It is also important to understand the data format required by the Fortran code, so we

will detail that now.

Response file (input) This file contains the information from the station data, after it

has gone through the filtering process and converted to the impedance tensor in frequency

space. This includes: the number of stations, number of periods, and number of responses3;

along with the station locations, and the actual responses (impedance tensor components)

for each station.

The data file also contains an ‘error’ section for each impedance tensor measurement. This

allows us to reduce the weightings of stations that may have unreliable data, for example.

Model file (input and output) The model file is comprised of three sections:

1. The first line details the number of discrete blocks Nx, Ny, Nz, with directions explained

below.

2. The next section contains Nx+Ny+Nz floating point numbers, corresponding to the

sizes of the blocks in their respective directions.

3The number of responses is either 4 or 8. Corresponding to the real and imaginary parts of the off diagonal
elements of the impedance tensor (Zxy and Zyx, four components total); and the real and imaginary parts of
the entire impedance tensor (8 components total).



CHAPTER 2. THE MAGNETOTELLURIC METHOD 13

3. The final section contains the resistivity values for each block. Each of the N = Nx ×
Ny × Nz resistivity values may be defined independently, or there might just be one

value here, indicating that all blocks have the same resistivity - this is is what we call

a uniform half-space.

In the 3D MT inversion code WSINV3DMT, and our work to follow, the model directions

are defined with x in the North-South direction, with North positive, y in the East-West

direction with east positive and z positive downwards. We will use the cartesian coordinates

(x, y, z) and the geographical coordinates interchangeably. In the horizontal plane, the centre

point of the model is the origin of the models coordinate system, and the model is symmetric

about its centre in the North-South and East-West directions.

Model files used for input (i.e. initial models) and those provided as output from the

inversion process, are identical. The final section of the model which contains the resistivities

for each block, may be in one of two formats:

The first is where there is a different resistivity value provided for each block. The second

is the case when the model defines a uniform half space - each block has the same resistivity.

In cases where little is known about the subsurface geology, a uniform half-space is pre-

ferred as the initial model.

In the case where the model is generated by WSINV3DMT, as the output from an inver-

sion process, the first line will also include the RMS value (misfit) of this models theoretical

response, in comparison to the input data.

Since input and output models are identical, we can use the output from one inversion as

input for another inversion. This will be explored in Chapter 7..

Response file (output) The program generates a Response file for each output model,

which contains the simulated response data for that model. This is in the same format as the

input data file, which is the actual response, and this makes it easy to calculate the RMS of

the pairwise differences between the two.

Other files

In addition to the above, several other files are used:

• A ‘startup’ file contains information required to start the inversion. This includes max

number of iterations, target RMS, desired smoothness etc.

• It is also possible to supply a file that specifies parts of the model which may be ‘frozen’.

This might represent known resistive bodies that we wish to remain fixed in the model.

2.5 Verification of the magnetotelluric method

Magnetotelluric inversion is an ‘ill posed’ problem; which means that (a) the solution is not

unique, (b) the solution is dependent on the initial conditions. This is largely due to the

fact that in a 3-D MT inverse problem, we usually have far more model paramers than data



14 2.5. VERIFICATION OF THE MAGNETOTELLURIC METHOD

parameters, which can easily result in overfitting of the data; hence the introduction of the

smoothness parameter.

For any particular inversion, even after we arrive at a reasonable solution in terms of RMS

and smoothness, the output must stx be subjected to a deal of interpretation based on a-priori

knowledge of the geological structures below the surface. Discussions with Stephan Thiel

made it clear that most papers published using MT results, these days, attempt verification

via some other method. The ability to verify this will obviously be highly dependent on the

physical depth that is being examined in an MT survey.

For high frequency MT studies, such as [36], with skin depths in the range of tens of

metres to several hundred metres, verification may be possible via drilling boreholes. Other

studies such as [14] use Geochemical data in conjunction with MT inversion results.

For greater penetration depths, different techniques must be used; including reflection

seismology, or passive seismology for deep mantle studies.

One might ask for verification of the magnetotelluric inversion method in general. This is

best thought of in the context of specific MT inversion algorithms, where we can determine

whether they can correctly inerpret data in real and synthetic data sets, as discussed in 2.3.5.

2.5.1 Joint inversion

Although joint inversion is not technically a method for verifying MT data, it is worth

mentioning it briefly in the context of our discussion so far. The goal of joint inversion is to

reduce the set of acceptable models, i.e. reduce the ill-posedness of the problem, by combining

several geophyiscal methods in a single inversion scheme, and requiring the model to explain

all data simultaneously [16]. The paper [16] explores two different approaches to the coupling

of MT, gravity and seismic refraction data, to form a 3-D joint inversion scheme. They report

improvement of inversion results in both cases.



15

Chapter 3

Cloud computing

We will now discuss some important aspects of cloud computing. We will start by defining

cloud computing, then continue by looking at more detailed concepts underlying the hardware

and software abstraction which motivates our approach.

This chapter necessarily uses some common terminology from Computer Science and

Java programming. While we aim for a gentle introduction, readers unfamiliar with some

terminology should check the glossary in Appendix A.

3.1 Definition

The NIST supplies the following definition for Cloud Computing:

‘Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction...’[15]

There are public cloud services, such as Amazon Web Services (Amazon), Windows Azure

(Microsoft), and Google Cloud Platform (Google). In Australia, there is also the new ‘Na-

tional eResearch Collaboration Tools and Resources’ (NeCTAR) project[12], a $47 million

national research infrastructure funded by the Federal Government, which as one of its four

sub-projects contains a Research Cloud. At the present time, the NeCTAR research cloud

provides free1access to researchers at any academic institution in Australia.

3.2 Layers of abstraction

Cloud providers differ in the way in which they provide access to resources. This is often

illustrated in a diagram similar to figure 3.1; where we detail the layers available on the

Amazon Web Services cloud.

Starting from the top, an ‘Application as a Service’ is a program which is accessible

remotely through a web browser, that performs a particular function. The example given

1Free access is currently limited to one virtual machine per user, however extended access can be requested.



16 3.3. BIG DATA AND MAP-REDUCE

Layer

Application (AaaS)

Platform (PaaS)

Infrastructure (IaaS)

Example (AWS)

Inversion Web App

Hadoop

EC2

(compute)

S3

(long term storage)

EBS

(temporary storage)

Hardware Beige-box 

computers

Intel Xeon 

CPU

NVidia 

GPUs

HPC 

Clusters

Figure 3.1: Layers of abstraction in cloud cloud computing. The Layers (in green) apply to
any cloud service provider. The examples presented here (orange) are specifically relating to
Amazon Web Services. We will discuss Hadoop in the next section, and the Inversion Web
App later on.

in the figure refers to a web application designed to perform 3D MT inversion, that we will

discuss in a later section.

‘Platform as a Service’ is the level that we would like to be working with. The example

of Hadoop, as we shall see, is a framework on which we can design our own programs to run,

without regard for the underlying infrastructure or hardware.

‘Infrastructure as a Service’ provides explicit access to resources in the cloud; which may

be useful for deploying Applications that cannot be run within an existing Platform. For

example, the Elastic Compute Cloud (EC2) allows us to start a virtual machine to which

we can connect (usually via SSH) and run our programs. EBS provides access to short term

storage, such as a virtual hard drive which we can attach to an EC2 virtual machine. S3

provides access to cheaper long-term storage.

In cloud computing, the hardware layer is usually abstracted away. However, Amazon

web services provide information regarding their High Performance Computing clusters.

3.3 Big data and map-reduce

Big data is concerned with data sets that are so large that conventional methods of data cap-

ture, storage, and analysis do not work. For example, keeping entries consistent in relational

databases, holding tens of petabytes of data distributed across the globe, is not possible[17].

The ‘map-reduce’ computational model was introduced by Google in the paper [8], and

this documented a simple way to define data-processing computations so that they could



CHAPTER 3. CLOUD COMPUTING 17

Figure 3.2: Simple map-reduce computation. We have N mappers, which means there are
N different keys in the input data set. We have a single reducer, which means all Mapper
outputs must have the same key. <key,value> pairs are not shown. [Need to modify diagram:
Change MapN to MapperN]

be executed across many processors in parallel. Since then, much effort in industry has

been dedicated towards developing this map-reduce model for big-data analysis. An open

source project called Hadoop has emerged as the leading implementation of the map-reduce

paradigm, and will be discussed in the next section.

3.3.1 Map-reduce computational model

The map-reduce computational model is based on the fundamental ‘map’ and ‘reduce’ op-

erations from functional programming. In map-reduce, a ‘map’ operation is implemented

by a function (called the ‘mapper’) that takes <key,value> pairs as input, and produces

<key,value> pairs as output. A ‘reduce’ operation, similarly implemented by a function

(called the ‘reducer’) takes<key,value> pairs output from the mappers, and produces<key,value>

pairs as output. Usually the final output is considered to be the <key,value> pairs from the

reducers.

The Chevron notation is common notation in Computer Science for representing a 2-

tuple, or pair of objects, representing a key and a value. The data types of ‘key’ and ‘value’

are arbitrary. They might be String, numbers, or a binary data type. The key is usually

used for organizing which mappers and reducers handle the computation; since each mapper

and reducer handles a different key. The value is then used by the mappers to compute its

output.

A simple map-reduce diagram is shown in Figure 3.2, illustrating a general map-reduce

operation.

We can use this style of computation for handling many different types of trivially parallel

algorithms. The keys might not provide meaningful information directly, but can be used to

simply instruct the map-reduce framework on how many Mappers to instantiate - where we

only pay attention to the number of unique keys. A simple example of using map-reduce for

such a problem is shown in Figure 3.3, where we compute the scalar (inner) product of two



18 3.4. HADOOP

vectors.

Mapper<1,a1>,<1,b1>

<2,a2>,<2,b2>

<3,a3>,<3,b3>

<N,aN>,<N,bN>

Mapper

Mapper

Mapper

<null,a1*b1>

<null,a2*b2>

<null,a3*b3>

<null,aN*bN>

Reducer

 a1*b1

+a2*b2

+a3*b3

+ …

+aN*bN

Map input Map output Reduce output

Map operation 

*

Reduce operation 

+

Figure 3.3: Dot product of two vectors: (a1, a2, a3, ..., aN ) · (b1, b2, b3, ..., bN ) illustrated using
map-reduce. The map input is the <key,value> pair corresponding to <index,value>.

3.4 Hadoop

Hadoop is the name given to a collection of open source projects, designed for distributed

high performance computing. It has been designed with ‘big data’ in mind, with the goal that

it should run in a fault tolerant manner on ordinary desktop machines that have a relatively

high failure rate.

At present, Hadoop is best known for its two main sub-projects [35]: the Hadoop Dis-

tributed File System (HDFS), a distributed file-system designed for storing large amounts

of data across many machines in a fault tolerant manner; and an implementation of map-

reduce, titled Hadoop MapReduce. Hadoop MapReduce is designed to work in conjunction

with HDFS (although not necessarily), in such a way that the program that schedules Map-

per and Reducer tasks, the ‘TaskTracker’, can schedule compute tasks to run on the same

nodes2that store the data that those tasks require. This is known as ‘bringing the computa-

tion to the data’. So if the data that is passed to a Mapper actually resides in HDFS, then

Hadoop can schedule the computation to take place on the node where the data actually

resides.

We shall primarily be focused on Hadoop MapReduce, but we will also use HDFS in order

to transfer and store the data, both input and output, required for inversion. HDFS is a core

component in Hadoop, so we can assume that it will be running wherever we have Hadoop

MapReduce available.

2We will use the term ‘node’ to refer to the underlying hardware that runs the Mapper task. This may
be a PC in an distributed Hadoop setup, or it may be a simulated node running on a single processor in a
multiprocessor machine.



CHAPTER 3. CLOUD COMPUTING 19

3.4.1 Hadoop in industry

Hadoop has seen great adoption in industry. Yahoo, for example, as of March 2009 were

running 17 Hadoop clusters with a total of 24,000 nodes[35]. Facebook have for years used

Hadoop MapReduce and HDFS for storing and processing huge data-sets [3].

Amazon Web Services (AWS) include a Hadoop MapReduce service called ‘Elastic MapRe-

duce’. This is designed for easily creating and configuring Hadoop clusters for running

MapReduce jobs. Using Elastic MapReduce, it is possible to create a cluster containing

the desired number and type of machines, specify the input data and MapReduce code, and

then execute this MapReduce job, all in just a few clicks, and in a matter of minutes; with no

knowledge required for network or cluster administration. Microsoft have recently released a

‘Hadoop on Azure’ service, providing similar functionality to AWS Elastic MapReduce.

It should be stated again that Hadoop and Hadoop MapReduce are thus far primarily

targeted at ‘big data’, rather than strictly computationally intensive calculations, that may

not require the ability to handle large amounts of data. However, it would be highly beneficial

if the types of services listed above could be used for these types of calculations. In fact, there

is nothing stopping this from happening. The main issue is one of running native programs

(for example the Fortran program used for 3D MT inversion) within Hadoop. We shall resolve

this in the main body of our research, but for now we shall assume we are just using one of

the interpreted languages supported by Hadoop, for example Java.

The ability to utlise the vast industrial resources mentioned above is one clear benefit; we

shall explore some more in the following sections.

3.4.2 Portability

Portability can be seen from the abstraction diagram in Figure 3.1. By accessing the infras-

tructure at the Platform level, i.e. writing our program to have its dependencies on Hadoop,

we can take our program and run it on any of the Hadoop services listed above, with little

modification. This enables us to take code written for Hadoop MapReduce and run it on any

of the Hadoop services listed above, in addition to an in-house Hadoop cluster that we can

create by installing Hadoop on local machines.

3.4.3 Fault tolerance

We define a ‘task’ as either a Map or a Reduce operation; these are the operations performed

by Mappers and Reducers, respectively. Hadoop provides task level fault tolerance, which

can be briefly explained as follows:

Each node has an individual ‘tasktracker’ which is in charge of running tasks on that

node. All tasktrackers are contact with the ‘Master Scheduler’, which is a process running

on the head node that assigns tasks to tasktrackers. The Master Scheduler is aware when a

tasktracker becomes unresponsive, and can reassign tasks assigned to it to other tasktrackers.

This is handled slightly differently for Map and Reduce tasks.

Failed Map tasks can simply be reassigned to another tasktracker and operation proceeds

as normal. Map tasks run in isolation; each one executes independently and has no interaction



20 3.4. HADOOP

with any of the others, therefore it can be restarted without issue.

Reduce tasks write their output upon completion - so any already completed reduce tasks

(and the Map tasks that they recieved output from) need not be run again. However, any

upon failure of a Reduce task, its input is lost. Therefore, mappers whose output became

input for this reduce task must be run again. The Reduce task is then run again with the

newly generated input.

3.4.4 Load balancing (speculative execution)

Load balancing can be seen as an extension to the fault tolerance described above. When

the Hadoop scheduler is running a series of tasks, it is possible that most of them will finish

while some are still executing. These tasks may still be executing because they are more

computationally demanding than the others, or the hardware of the node that they have

been scheduled to run on is slower.

In these cases, a form of load balancing known as ‘speculative execution’ can be invoked

by the Hadoop scheduler. It can duplicate the still-running tasks on nodes than have finished

running their allocated tasks and are now free. The scheduler then takes the output from

the one that finishes first, and terminates the othe duplicates. Again, it is the ‘no outside

effects’, or isolation, explicitly enforced by Hadoop, that enables this to be possible.

3.4.5 Hadoop usage

We define a Hadoop MapReduce ‘job’ as a series of Map operations that execute in parallel,

followed by a series of Reduce operation that also execute in parallel.

A Job can be programmed in a number of ways, and at different levels of abstraction.

Since we have been focusing on the Amazon public cloud, we shall outline the options they

have made available:

Plain Java This is the standard way of programming a Hadoop MapReduce job, supported

by all Hadoop implementations.

The programmer codes a MapReduce job against the Hadoop API, which gives low-level

access to all of Hadoop’s mechanisms, such as access to a distributed filesystem (HDFS),

and fault tolerant output channels. The Java classes are provided directly to Hadoop, or

conveniently specified as an input parameter in Elastic Mapreduce.

The programmer is able to define Map and Reduce tasks by implementing the correspond-

ing Hadoop interfaces in Java. A simple Java program, implementing the Hadoop API, can

be written with a Main method that instantiates these tasks and submits them to Hadoop

for computation. This is the path that we will follow, and it will be explored in more detail

in Chapter 6.

Streaming Hadoop streaming allows you to define a section of code as a Mapper or a

Reducer. This code is usually an interpreted language (Appendix A) such as Java or Python,

but could be a compiled language, in which case a binary file would be supplied. This binary

must be compiled for the specific hardware and operating system on which Hadoop is running.



CHAPTER 3. CLOUD COMPUTING 21

The framework executes one of these Map and Reduce programs as a separate process

for each Map and Reduce task, and supplies the input as stdin 3. It then retrieves outut as

stdout from each.

Streaming allows programmers to use a language they are familiar with, allowing you to

rapidly develop these applications without needing to learn the Hadoop API. In addition,

this could be an easy way of running legacy code in a massively parallel manner.

It does not offer us the level of control we require. From the Elastic MapReduce console,

there is no easy way of chaining together MapReduce jobs.

High level Pig or Hive program Pig is a high level abstraction for programming Hadoop

jobs. Its primary advantage is rapid development using a custom scripting language known

as Pig Latin - a language designed for expressing massively (embarrassingly) parallel data

analysis computations.

Hive is another high level abstraction, designed for data analysis on Hadoop. It allows

programmers to express data-parallel calculations using an SQL-like language called HiveQL.

Neither of these options are suitable for our purposes.

3stdin and stdout is, in computer science, a standard protocol for supplying input and output to a process.
It is usually in the form of human-readable text. For example, when running a console (command line)
program, stout is the output displayed on the screen. stdin is the keyboard input.



22 3.4. HADOOP



23

Chapter 4

C3L parallel implementation

The Collaborative Cloud Computing lab (C3L) is an initiative established at the University

of Adelaide in 2010, with the goal of exploiting cloud computing to conduct computational

research in a lab without local computers1. Their first efforts have been focused on a collabo-

rative effort between Computer Science and Geophysics, which we shall look at in detail now.

These efforts are the basis for our work, which will be extending their parallel implementation

of WSINV3DMT to run within Hadoop.

In this chapter we discuss the contribution made by C3L to 3-D MT inversion. Essen-

tially, a parallelisable section was discovered in the WSINV3DMT code, and the program

was redesigned with the ability for this section to be distributed across multiple computers.

Virtual machines in the cloud were used to store the MT data and run the calculation, and

a Web-Application2implemented in order to provide convenient access (a ‘front end’) to this

3D inversion program running in the Cloud.

This project was designed to run on AWS and Windows Azure, although the implemen-

tations on each were considerable different.

In the first section of this chapter we shall discuss how the WSINV3DMT code is paralelis-

able, which will be directly related to our project. We then detail their exact implementation,

focusing on the AWS implementation as it is simpler and more closely related to the approach

we wish to take.

Finally, we will discuss downfalls with the approach taken here, and the reason our re-

search is warranted.

4.0.6 Paralellisation

As we saw earlier, foward modelling can be carried out independently for each frequency.

Siri’s inversion code carries out several forward modelling steps at each iteration, and it is

these that are run in parallel for each frequency.

In order to do this, the logic controlling the main loop in WSINV3DMT, previously in

Fortran, was implemented in a Python script. The computationally intensive parts were left

1Any computers being used were to be used only for connecting to various cloud service providers, including
AWS and Windows Azure.

2‘A web application is a client/server appplication that uses a Web browser as its client program, and
performs an interactive service by connecting with servers over the Internet’.[23]



24

5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

35

40

45

Number of frequencies

T
im

e
 (

d
a

y
s
)

 

 

Parallel

Serial

Figure 4.1: Comparison of execution time in serial (WSINV3DMT) vs. parallel (C3L) on a
modest data-set, described in Appendix C. Here we carried out 5 iterations of the main loop,
equivalently expressed in WSINV3DMT and the Python code used by the C3L implementa-
tion.

in Fortran, and split into 17 different source files which can be called from the Python script.

This type of parallel execution allows us to achieve speedup dependent on the number of

frequencies present. A summary is shown in figure 4.1.

4.0.7 Implementation

Only two of the 17 parts of computationally intensive Fortran code can be run in parallel.

These have been named Part2 and fwdcalc.

In order to run these in parallel, the Python script connects to the remote nodes via

ssh, transfers the input data, then executes the Fortran executable binaries. It is assumed

that these nodes are configured in advance, with the appropriate Fortran codes and libraries

having been installed. These Fortran executables save their output to a file, and the Python

script copies the output from each node back to the head node, which is running the Python

script

This implementation is more low-level than, for example, using pure Fortran with MPI to

implement the inversion in parallel. This approach was chosen primarily because it was simple

and direct, without using any parallel frameworks (such as Hadoop MapReduce) which were

still in their infancy at this stage. This also allowed researchers at C3L to gain experience in

low level operations using infrastructure as a service (IAAS) on the cloud.



CHAPTER 4. C3L PARALLEL IMPLEMENTATION 25

4.0.8 Web application

It should not be desirable, nor necessary, to instruct geophysicists on the details of setting

up the virtual machines in the cloud and uploading files etc. in order to run a MT inversion.

To fully realize a primary benefit of cloud computing - availability of resources on demand,

it was necessary to provide an easy to use interface for the end-users of this software.

A web-application was created, providing an easy to use web-page where the geophysicist

could upload input files, select parameters, and start the inversion. The web application would

then create the required number of virtual machines in the cloud (one for each frequency) from

a pre-defined virtual machine image, containing the Fortran binaries. The web application

would then run the Python script, and display the output files for download once the inversion

was complete. This was implemented in a web-application framework called Django, and

provided a significant convenience for the end users.

4.0.9 Area for improvement

The low-level implementation mentioned above has a number of issues; the main issue being

one of portability inherent in the IAAS approach. The software works sufficiently well for

distributing the computation among multiple virtual machines in the cloud, but would need

to be modified in order to use it to utilise the multi-core nature of the virtual machines.

Also, fault tolerance and load balancing become important as more machines are used

and the likelihood of a single machine crashing increases. These features would need to be

implemented manually and have not been done here.



26



27

Chapter 5

Initial code analysis

In order to improve the work described in Chapt. 4, some analysis was carried out to see

which parts of the Fortran code were the most computationally intensive. These results

are presented here. Siri’s original serial code was used here because it gives us a simpler

environment to profile and debug, without the added complications present in the parallel

implementation, such as transfer time, network latency etc.

5.1 Inversion call-chart

It is claimed in [18] that the inversion calculation is dominated by the forward modelling and

sensitivity matrix calculations. We should like to verify that, or at least obtain a clearer idea

as to the hot-spots1 in the algorithm.

We can see that the sensitivity matrix calculations dominate (sens3d), followed by calcu-

lating the representer matrix (coprept) which is also closely related to the sensitivity matrix.

Forward modelling is also dominant (fwd3d). This does not exactly solidify the claim that

forward modelling is a computationally dominant part of the inversion algorithm; however,

the analysis above was conducted with a relatively small model file.

5.2 Forward modelling times

Instead of conducting the above analysis on a large model, which would be very time con-

suming (several days on a M1.Large instance), we can analyze how the time spent in forward

modelling increases as model size increases. In order to do this, an artificial data set was

used, and a model was adapted from a study on the Paralana region.

This model was adjusted by adding and removing cells while keeping the total model size

roughly the same; essentially varying the resolution of our model. The example is shown in

figure 5.2. It must be stressed that this example is artificial and designed only to confirm the

assumed increase in running time. It is consistent with approximate figures found by earlier

research[1] where N=1600 takes 40-50 seconds and N=64000 takes 19-20 minutes.

1A hot-spot is a computer science term used to refer to small sections of code that a program may spend
most of its time executing. See the glossary for more details.



28 5.2. FORWARD MODELLING TIMES

MAIN__
93.50%
(0.00%)

sens3d_
83.29%
(0.02%)
5×

comprept_
6.97%
(6.58%)
5×

fwd3d_
3.13%
(0.00%)
22×

qmr3d_
85.40%
(16.50%)
7470×

24.62%
979272×

21.73%
489636×

17.86%
24020×

0.62%
365560×

2.87%
1247170×

0.57%
50×

comp_dzxx_
20.64%
(0.00%)
900×

comp_dzxy_
20.64%
(0.00%)
900×

comp_dzyx_
20.64%
(0.00%)
900×

comp_dzyy_
20.64%
(0.00%)
900×

bound3d_
0.74%
(0.00%)
270×

0.14%
50×

comp_dzz_
82.56%
(0.12%)
3600×

82.31%
7200×

20.64%
900×20.64%

900×

20.64%
900×

20.64%
900×

2.52%
220×

0.60%
220×

fwd2dte_
0.73%
(0.00%)
3645×

Other function calls

dpbtrs_
3.84%
(0.13%)

dtbsv_
3.71%
(3.71%)

130176000×

dtpsv_
2.09%
(2.09%)
31702×

dppsv_
2.09%
(0.00%)

wsinv3d.f

Figure 5.1: The ‘call chart’ for inversion on a small model and artificial data set, with 5
iterations. The labels represent the function name, the percentage represents the fraction
of the total running time spent in this function and its children, and the percentage in
parentheses represent time spent executing this function alone. So, for example, the sum
of all of the values in parentheses should total to 100. When a function is called by more
than one parent, then the arrows are labeled to indicate the percentage it is called from each
parent. A statistical based profiler was used, so if the probability of finding the program
inside a particular function is very small then the profiler may not detect this. The colours
are intended for clarity and have no significance.



CHAPTER 5. INITIAL CODE ANALYSIS 29

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

x 10
4

0

500

1000

1500

Number of Model parameters, N

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

Forward modelling on an artificial data set

 

 

Running time

Approximate fit

Figure 5.2: Forward modelling times on an artificial data set. The estimated fit is cubic and
displays rapid increase in forward modelling time for increasing model sizes. The fit should
not be expected to be smooth in practice, due to algorithmic optimisations depending on the
model details.



30 5.2. FORWARD MODELLING TIMES

A path of investigation was to determine whether forward modelling could be sped-up by

offloading computation onto GPU units for parallel processing. As noted in the paper [18],

the wsinv3d Fortran code package is complex and well tested, and it is beneficial to ‘...not

rework any logic or algorithmic technique in the Fortran code which would require it to then

go through a rigorous testing cycle’. This could be achieved by using a linear algebra library

optimized for the GPU, such as CUBLAS [32] in place of library calls to the standard Fortran

BLAS routines.

There is overhead involved in transferring data back and forth to the GPU unit, and

to make this approach worthwhile, significant time (when compared to transfer time) must

be used in these BLAS routines. An analysis of the forward modelling was carried out to

determine the number of calls made to BLAS library, and the time spent in each call. This

is outlined in table 5.1.

Function name Number of calls Total time (s) Time per call (µs)

zdotc 122191 68.48 0.5604
zdotu 169920 64.21 0.378
zaxpy 23829 0.13 0.00546
zscal 916831 0.07 0.000076
zgeru 1818432 0.04 0.000022
ztbsv 20664 0.04 0.0019
zcopy 9796 0.02 0.0020
izamax 929880 0.01 0.000012
dscal 186837 0.01 0.000054
dcabs1 1842261 0 0
dsyr 186837 0 0

Table 5.1: Linear algebra library calls and the corresponding time spent in each. These calls
would appear below ‘other function calls’ in figure 5.1. The total time for the overall forward
modelling calculation was 1453 seconds. The cumulative time spent in the above calls is
133.01 seconds, or 9.15%.

From table 5.1, it is clear that even if we could completely eliminate the time required for

these calculations, we would only achieve less than 10% speedup. It was decided that this

route was not worth perusing.



31

Chapter 6

Hadoop implementation of 3D

inversion

We have already introduced Hadoop as a parallel computing framework, and discussed the

benefits in using it for computationally intensive scientific computing. We shall now ex-

plain how we have taken the parallel implementation of WSINV3DMT created by C3L, and

implemented it using Hadoop MapReduce and Hadoop HDFS.

It is of benefit to start at a high level, showing the Class structure and execution path.

We can then explain more about Java and Hadoop, and the libraries and APIs required to

make this a possibility. Then we will show how we have designed our program to be modular,

so that much of the ‘boilerplate’ code can be re-used in future projects.

Algorithm 2 has been left largely intact, so we will describe this in more detail, and

explain the important functions of the seventeen source files into which it has been divided.

We then detail issues relating to Hadoop, that needed to be overcome in order to get this

to work.

As in Chapter 3, we use some common terminology from Computer Science and Java

programming. Users unfamiliar with this should check the glossary in Appendix A.

6.1 Class structure and Hadoop

Using the ‘Plain Java’ method (Section 3.4.5) of defining the parallel structure of our program

using the Hadoop API, we design a Java Class file that handles the decision making logic

for the WSINV3DMT algorithm. This is very similar to the C3L project, which transferred

the decision making logic to a Python script. So, we were able to use this approx. 500 line

Python script as a reference.

A major goal of this implementation, was to keep the code implementing the MT inversion

process separated from the boilerplate code; which handles the interactions with the Hadoop

framework and operating system. This enables much of our code to be reused, as we will

discuss in Chapter 8.

Figure 6.1 provides an overview of the important class files pertinent to this discussion.

We shall start by detailing the functions of the MT specifc class files, then present the more

technical details of the boilerplate implementation, which is important for future work.



32 6.1. CLASS STRUCTURE AND HADOOP

MapReduce

Utilities

putNodeBinaries()
runProcessReturnOutput()
makePermissionsExecutable()

Utilities.java
100 loc

isSplitable()

NonSplittableTextInputFormat.java
5 loc

Main

Controller()
initialiseParallelFwdCalc()
initialiseParallelPart2()

Controller.java
550 loc

putNodeBinaries()

ControllerUtilities.java
50 loc

main()

Main.java
20 loc

getNodeBinaries()
copyLocalFilesToOutput()
windUp()

Map_Super.java
<extends hadoop.mapreduce.Mapper

110 loc

map()

Map_Part2.java
25 loc

map()

Map_FwdCalc.java
20 loc

<uses>

uses

<uses><uses>

<extends>

Figure 6.1: Class structure of the important source files in the implementation. The three
packages; Main, MapReduce, and Utilities, represented by the three yellow boxes, contain
code used for different purposes. The Main package contains the code for reading input and
running all calculations on the head node. MapReduce contains the code designed for running
on remote nodes. Utilities contains utility methods that may be used by any other class, or
the Hadoop Framework. Classes labelled in red indicate that they contain MT specific code.
In our explanations we shall mostly omit the extension .java. The loc label indicates the
important lines of code contained within this class.



CHAPTER 6. HADOOP IMPLEMENTATION OF 3D INVERSION 33

6.1.1 MT Inversion Logic

The logic handling the inversion process is implemented in the file Controller. This has

the function of controlling execution of the 17 Fortran source files, which carry out the logic

found in Algorithm 2. The controller also starts the mappers Map Part2 and Map FWDCalc,

which receive the entire data set 1and carry out the sensitivity matrix calculation and forward

modelling, each instance handling a single frequency.

We can see a high level overview of how the classes interact during execution in Figure

6.2. This Main class reads the input data from the local file system, and instantiates the

Controller object. The Controller object then performs Part1, before going in to the main

loop in Algorithm 2 which is indicated in the diagram. In this loop the Controller runs the

other 16 parts of the Fortran code, determining when to run MapReduce tasks for Part2 and

FwdCalc on the remote nodes.

These 16 other Fortran files carry out different parts of Algorithm 2, for example, com-

puting the Cholesky decomposition and updating the model file. They also handle reading

input and writing output, and the matrix operations seen in Chapter 5. Further discussion

on this is not relevant.

Note that the loc labels in 6.2 represent the important lines of code here in the class file,

not including comments and import statements.

6.1.2 Mappers and Reducers

We extend the abstract Hadoop class Mapper, in order to define the code that should be run

on the remote nodes. Map Super contains general functionality required by both Forward

Modelling and Sensitivity matrix calculation. It has two main purposes.

The first is to retrieve the files required by the Mapper, these files include both data

and Fortran executables. The second is to provide a ‘clean up’ method, which supplies the

output from the Fortran executables to the Hadoop framework for collection, and deletes any

temporary data residing on the node on which it executes.

This Map Super.java class is very general, and we further extend it in order to run the

sensitivity matrix calculation and forward modelling calculation. This is done by the classes

Mappers Map Part2 and Map FWDCalc, which are very simple, and need only ‘run’ their

respective Fortran executable.

6.2 Technical details of implementation

We now delve into the technical details of how the classes above are able to perform the tasks

described in 6.1

We will use the standard Hadoop input and output mechanism of <key,value> pairs only

for instructing the node which frequency it is to process, which we discuss first. We then

discuss issues relating to transferring data to the nodes, and execution of Fortran binaries on

those nodes.

1Not an issue, since the data set in MT is simple the impedance tensor, a relatively small file usually less
than 1mb.



34 6.2. TECHNICAL DETAILS OF IMPLEMENTATION

Main Controller

Instantiate Controller

Map_FwdCalc Map_Part2

1

1

2 N

FwdCalc(1,2,…,N)

2 N

Return sensitivity matrix

Return model

Part2(1,2,..,N)

Return output

k iterations

Decision

Decision

Skip

Skip

Figure 6.2: The white labels at the top represent the class names, corresponding to the ones
in the class diagram Figure 6.1. Execution time proceeds vertically downwards. The vertical
bars indicate that a function is running; green when it is currently carrying out a calculation
on the head node, red when it is waiting for a sub-process (child) to complete, yellow when
the process executing on a remote node/nodes. Solid lines with a label ending with ‘()’
represent a function call, dashed lines representing control (and information) being returned
to the parent. The dashed blue rectangle indicates that the section contained within it is
iterated over k times. This diagram is not intended to illustrate any complex logic.



CHAPTER 6. HADOOP IMPLEMENTATION OF 3D INVERSION 35

6.2.1 Mapper and reducer input and output

As mentioned in Chapter 3.3, Hadoop MapReduce uses<key,value> pairs as input and output

for the Mappers and Reducers. The design of Hadoop MapReduce is heavily directed towards

data processing, where Hadoop automatically splits input files into <key,value> pairs and

sends these pairs to Mappers and Reducers.

We use this standard Hadoop MapReduce <key,value> system as a simple messsage

passing system, which controls the number of Mappers, and the frequency that each Mapper

processes.

We do not use the key, and it can take any value. This may be useful for specifying

which tasks are allocated to each node, but that is not necessary in our work. In the Map

stage, each unique value defines a unique Map task. Thus, we specify the Map class (either

Map Part2 or Map FWDCalc), and then create a list of input values in the range 1,2,...,n,

where n is the number of frequencies we wish to process. We specify this list of values to

Hadoop as the input to the Map-Reduce job, and Hadoop handles creation of the appropriate

number of Mappers, and passing each of them one of these values, which corresponds to the

index of the frequency they are to process.

6.2.2 Issue 1: Data flow

We still need to handle transferring of the data, including Fortran binaries, to the nodes.

We wish to use inbuilt Hadoop mechanisms to achieve this, because using resources explicily

reduces portability.

We introduced HDFS in Section 3.4, and this is what we will use to transport data to our

Nodes for computation. HDFS is complicated, but we do not need to get into the fine details

of HDFS, indeed that is one of its advantages.

We will use HDFS slightly differently for input (to the Mapper) and output (from the

Mapper). We will use the ‘Distributed Cache’ for input, and the standard Hadoop output

mechanism ‘mapred.output.dir’ for output.

Distributed Cache

The Distributed Cache is a feature within Hadoop, primarily designed for transferring data to

the remote nodes. Once a Hadoop Job has begun execution, data in the Distributed Cache

cannot be modified - it can only be read. This enables HDFS to efficiently2 replicate the

information in such a way that each node will read the same information. This is contrasted

to the input passed to Mappers and Reducers in the form of <key,value> input pairs, in that

the data can be, and usually is, different 3.

We have two types of data that need to be sent to the nodes - the Fortran executables

and the MT data. While sending the same Fortran files to the remote nodes every time a job

is initiated may seem unnecessary, we do so for a number of reasons:

2With regard to network latency and storage redundancy, as HDFS is designed to scale from one node to
several thousand nodes, possibly located in different physical locations



36 6.2. TECHNICAL DETAILS OF IMPLEMENTATION

1. The data transfer time (on the order of a few seconds) is small when compared to the

execution time (several minutes to several hours)

2. It is simpler, in that we do not need to concern ourselves with storing persistent data

on the nodes

3. There is no need to pre-configure different nodes; which means we can add new compute

nodes to the Hadoop cluster at will, without needing to install software or pre-configure

them.

The Distributed Cache has a simple API. The code for used by the controlling script to

put files in the DistributedCache is in ControllerUtilities.java; and the code for retrieving

those files at the remote nodes is contained within the Mapper superclass Map Super.java.

mapred.output.dir

The mechanism we use to transfer output from the Mappers to the head node is the standard

Hadoop MapReduce output directory in HDFS. There are some subtleties to how this works.

When a Map task has completed, we transfer data to a temporary output directory, referred

to by Hadoop MapReduce as ‘mapred.output.dir’. Hadoop then handles making this available

on the head node. The reason for this indirect approach is that it allows the fault tolerance

and load balancing mechanisms in Hadoop to function correctly. If duplicate mapper jobs are

running, then the framework ensures that only one of their outputs are transferred through to

the final output directory made available on the head node, allowing it to work transparently

to the user. The code for using this output mechanism is contained within Map Super.java

and Controller.java.

6.2.3 Issue 2: Executing Fortran code within Java

Compilation

While the Java code we have written is portable across any Hadoop system 4, the Fortran

code must be compiled to suit the operating system on which Hadoop is running. This is

a necessary pitfall of using a compiled language such as Fortran, rather than an interpreted

language such as Java. However, much like the way consumer software is distributed, this

could be done in advance so it would not be required of the user of our software package.

ProcessBuilder

In order to run our Fortran executables, we need to somehow ‘wrap them up’ so that they

can be executed from within Java. This is done using a standard feature of the Java library,

java.lang.ProcessBuilder. There are some caveats when using this, best illustrated through a

code sample.

3A notable exception to this is the canonical Hadoop example - Word Count, where a long document is
split into several blocks of text. These blocks are passed to the Mappers, which output <word, 1> where a
different pair is output for every ‘word’ in the text. Each reducer processes a different word, adding together
the values, to give a total count for that word.

4With the exception of changing Permissions, also discussed here



CHAPTER 6. HADOOP IMPLEMENTATION OF 3D INVERSION 37

Listing 6.1: Code sample for using ProcessBuilder

1 ProcessBuilder pb = new ProcessBuilder(commands);
2 pb.redirectErrorStream(true);
3 Process process = pb.start();
4

5 InputStream inputStream = process.getInputStream();
6 StreamProcessingThread outputProcessor =
7 new StreamProcessingThread(inputStream, "Process output:");
8 outputProcessor.start();
9 int waitCode = process.waitFor();

We want to retrieve the console output printed by the Fortran executables. Additionally,

if this output is not consumed, the executable will be halted and will not complete. The

first line in Listing 6.1 instantiates the ProcessBuilder object, where ‘commands’ are the

commands we wish to execute, as if we were running the executable from the terminal. The

second line redirects stderr to stdout, so we can collect them with the one stream reader. The

third line starts the process. The following lines attach a stream reader to consume output

from the executed process, and send it through the Hadoop logging system, so we are able

to read it from our head node. The final line tells the Java program to halt execution until

the process has finished.

Permissions

When we use Hadoop to transfer the executables files to the remote nodes, we must change

the permissions of those files to make them ‘executable’ before we can run them. In a Linux

based operating system such as Ubuntu, permission changes are made by running the inbuilt

‘chmod’ program, with the path of the executable as a parameter.

We need our program to perform this permission change, so we will use the ProcessBuilder

to run chmod before running the Fortran executable. The code in Listing 6.1 is used for this

purpose, and we use the appropriate ‘commands’ for each executable file, eg. ‘chmod a+rwx

Part2’.

We have only implemented this permission change for a Linux based system, on which

all of our testing was performed. On a Windows based operating system these permission

changes would be different, and we would need to specify the appropriate command within

our program.

6.3 Hadoop configuration

We stated earlier that Hadoop makes it easy to choose the computational resources to match

our inversion. We would like to be able to finely tune Hadoop to make full use of those

resources. The Hadoop configuration files can be used to specify the Map task capacity per

node, thus making use of multi-core processing capabilities of the hardware, if present. See

Appendix E for more details and an example.



38 6.4. TESTING HADOOP IMPLEMENTATION

6.4 Testing Hadoop implementation

With a complete implementation of WSINV3DMT using Hadoop MapReduce, we would like

to be able to test it. We have made no modifications that we would expect to result in

different output, thus we would like to confirm that output is identical to the existing serial

and parallel implementations. We will do this on the well tested data-set detailed in Appendix

C, and we are able to directly compare our running time to that of the 5 frequency data set

in Figure 4.1.

Several other data-sets were also tested to ensure output at each iteration was also iden-

tical. We found the output to be identical for all three implementations, in all cases.

The testing was conducted on AWS, using the cc2.8xlarge instance type described in

Appendix B.1. We can examine the execution time, detailed in Table 6.1. The results for

WSINV3DMT and C3L Parallel were collected during the earlier research by C3L, and the

instance type m1.large, described in Appendix B.1, was used. Our testing (See Appendix

B.1) showed us that the single threaded performance of cc2.8xlarge was approximately two

times that of the m1.large instance. In particular, serial inversino using WSINV3DMT took

just over twice as long to complete on the m1.large instance.

We have included the cost in Table 6.1 as this is a valuable measure to determine the

usefulness of our implementation. For identical hardware, we do not expect the running time

of our implementation to be any different than the C3L parallel implementation. However,

we have much greater flexibility when choosing our instance type, as we can utlitse both

multi-core machines, and different machines, completely transparently through Hadoop. The

C3L implementation could theoretically achieve the 50 hour time that we recorded, but it

would cost 50∗8∗$2.40 = $960, as their implementation cannot utilize the multi-core nature

of the cc2.8xlarge instance type.

We see that of the two parallel implementations, C3L and Hadoop MapReduce, Hadoop

MapReduce is both cheaper and faster. When comparing WSINV3DMT to the Hadoop

MapReduce implementation, a cost increase of 25% results in a reduction of execution time

by a factor of 6. Alternatively, comparing WSINV3DMT to the C3L implementation, a

cost increase of 248% results in a reduction of execution time by only 3.2. In many cases,

these ratios may mean that our Hadoop MapReduce implementation is a viable alternative

to WSINV3DMT, where the C3L implementation was not.

Implementation Hardware Execution time (hours) Cost

WSINV3DMT m1.large 300 $96
C3L m1.large * 8 93.7 $239
Hadoop MapReduce cc2.8xlarge 50 $120

Table 6.1: Time and expense comparison for the Paralana 5 frequency data set. Both the
C3L implementation and the Hadoop MapReduce implementation run the forward modelling
and sensitivity matrix calculations in parallel. The costs are calculated by the instance cost
per hour, multiplied by the number of hours. For C3L and Hadoop MapReduce, this is
multiplied by the number of parallel machines.



39

Chapter 7

New data set: Carrapateena region

We shall now investigate using our software package on a new data set. We will need to

tune the input parameters of the inversion in order to complete the inversion in a reasonable

time. Reasonable, is in most cases, determined by time and budgetary constraints. We will

be using the cc2.8xlarge instance type on AWS for our inversion and we will aim to design

our inversion to finish in under 48 hours, bringing the total cost for the inversion to around

$116.

Our new data set is from the Carrapateena region in South Australia. We will start this

Chapter by examining the station data and locations, and remove data in order to speed

up our calculations. We will then run some experiments with different starting models, all

using the same half-space format, but varying in both resolution and physical extent. This

will provide a good opportunity to examine the trade-off between the physical information

we can obtain; and the practical issue of running time.

We will see that with these restrictions, we are only able to complete a preliminary analysis

on this new data-set. However, we should be able to determine some useful information,

and provide suggestions for performing a more extensive inversion. We are performing our

inversion on the Amazon cloud, but our Hadoop implementation can easily be installed locally

on machines dedicated to performing these inversion tasks, providing a more cost effective

solution in some cases.

7.1 Data set

Our data set contains 48 stations, each with 8 response function directions, and each of these

directional components are recorded for different 7 frequencies. These components correspond

to the components of the impedence tensor in 2.1, and we make the conversion from frequency

(Hz) to period (s) due to the convention in [30].

This data has already been pre-processed using BIRRP; and we will examine the resulting

data in detail now.



40 7.1. DATA SET

7.1.1 Station data

We note that a computationally intensive part of the inversion algorithm is the sensitivity

matrix calculation, which is dependent on both the number of model parameters M multiplied

by the number of data parameters N.

The measurements from each of our 48 stations contains the 8 components of the impedance

tensor; giving a total number of data parameters of N = 384.

We would like to remove some of these, in order to provide a smaller data-set on which to

perform our inversion. We do this by selecting stations and completely removing all of their

data from the data file. However, with 48 stations, we need to decide which station data to

remove.

Figure 7.1 shows a plot of all of the the station locations. The ones we wish to keep have

been marked. We have chosen to remove stations from tightly packed regions, maintaining

an even coverage over the entire survey area. Another approach might have been to focus

only on a region with tightly packed stations; however we wanted to examine a larger region.

We have reduced the number of stations to 36, and this will be our starting point to examine

different models. We will not examine calculation times with different numbers of stations,

as we wish to concentrate our efforts on the effects of model size and resolution.

−40 −30 −20 −10 0 10 20 30 40
−50

−40

−30

−20

−10

0

10

20

30

40

50

East−West station location (km)

N
o

rt
h

−
S

o
u

th
 s

ta
ti
o

n
 l
o

c
a

ti
o

n
 (

k
m

)

Station locations

 

 

Original stations

Stations used

Figure 7.1: MT Station locations. The ‘Original stations’ indicate all station locations in the
original data set. ‘Stations used’ indicate the ones we have chosen for this inversion. In total,
we have removed 12 of the original stations from our data set.



CHAPTER 7. NEW DATA SET: CARRAPATEENA REGION 41

7.1.2 Skin depth

The skin depth equation (2.2) is often simplified using some reasonable approximations. Since

the magnetic permeability µ does not vary substantially in the Earth [33], we can approximate

the skin depth δ (in m) by:

δ(T ) ≈ 500
√
Tρa (7.1)

where ρa = 1/σa is the apparent resistivity (in Ωm) and T is the period (in seconds). (7.1) is

a widely used practical equation in MT [20], due to its usefulness in quickly approximating

the depth of exploration.

For the apparent resistivity, 10 Ωm is a reasonable value to use in sedimentary environ-

ments, but is not applicable when the skin depth exceeds the thickness of the sediments. In

many cases, a value of 100 Ωm becomes a good approximation[34], and is what we shall use

here.

Figure 7.2 shows the approximate skin depths for the periods recorded in our data. We

can use this information to make adjustments to our model file.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

50

100

150

200

Period T (s)

A
p

p
ro

x
im

a
te

 k
in

 d
e

p
th

 (
k
m

)

 

 

Period recorded

Figure 7.2: Approximate skin depths for the Carrapateena region data set with a 100 Ωm
apparent resistivity.

7.2 Model file choice and output

Recall that a model file defines a 3-dimensional grid, with Mx,My,Mz blocks in the x,y,z

directions respectively, each block having a resistivity value. While blocks can be different

sizes, there are some restrictions on the model file that can be used with WSINV3DMT. The

main one of concern is: (1) The blocks in the model must be distributed so that the station



42 7.2. MODEL FILE CHOICE AND OUTPUT

locations, as defined in the data file, appear in the centre of the blocks at the surface.

Our stations are distributed over a 100 km×80 km region, so the blocks within this region

of the centre of the model file must be correctly aligned.

There are some rules of thumb on model file dimensions, see Appendix D.2. The goal is

to extend the model far beyond the region we wish to examine, which will allow edge effects

to be minimized within the region that we do wish to examine. We usually have a higher

resolution, i.e. smaller blocks, in the central region, and the external region consists of larger

blocks, which are primarily there to minimise edge effects. We call these larger blocks the

buffer zone.

There are no such restrictions as (1) when it comes customizing our model in the vertical

direction. However, we do wish it to be appropriate for the skin depths in Figure 7.2. We

have chosen our model grid locations to cover a depth up to 668 km, as plotted in Figure 7.3.

We will use a half-space resistivity format for all initial models, with a value of 10 Ωm.

This means that every block in the model starts with the value 10 Ωm. As mentioned in

2.4.1, the half-space format is preferred when little is known about the subsurface geology.

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

Grid point number

D
e

p
th

 (
k
m

)

Figure 7.3: Model file grid point locations in the z direction, indicating the depth of the
model.

We start with a model file generated by a commercial software package called WinGLink1.

This software generates a model file where the grid spacing in the x-y plane satisfies require-

ment 1, and the vertical grid spacing is as above.

We then make some modifications to the external region of the model file in the x-y plane,

without modification to the central region. We will examine three different modifications,

each with the same grid spacing in the vertical direction. All quoted times, unless stated

1WinGLink[11] is a commercial software package for processing and interpreting geophysical data, primarily
focused on Magnetotellurics



CHAPTER 7. NEW DATA SET: CARRAPATEENA REGION 43

otherwise, are for the initial model file, with the highest frequency.

7.2.1 Model 1: benchmark

This model will be our benchmark. The model file has number of parameters 52 ×40 ×27,

with coverage in the x-y plane of 512 km×476 km, as displayed in Figure 7.4a. The sensitivity

matrix calculation time was 23 minutes, and the forward modelling time was 69 minutes.

7.2.2 Model 2: decreasing surface coverage by block removal

For this, we remove the second largest padding blocks (shaded in Figure 7.4a) from Model

1, and shit the outer padding blocks inward, contracting the model. This must be done

symmetrically about the centre of the model, in order to maintain requirement 1. This gives

us a model file of 50 ×38 ×27, with coverage in the x-y plane of 416 km×380 km.

The sensitivity matrix calculation time was 15 minutes, and the forward modelling time

was 30 minutes.

7.2.3 Model 3: increasing surface coverage by adding a block

For this, we add a block of length 96 kmin both the x and y axis to Model 1, in order to

extend the range. This block is added inside the largest block (100 km). This must be done

symmetrically about the centre of the model, as per the previous model. This gives us a

model file of 54 ×42 ×27, with coverage in the x-y plane of 704 km×668 km. This has not

been plotted.

Forward modelling time was 87.75 minutes; sensitivity matrix calculations, however, ran

in excess of 15 hours for all frequencies, and we did not wait longer for them to complete.

Currently, with the Fortran code running these calculations, there is no way to check the

progression, so it could have taken much longer.

This has showed that extending the model range with an extra block has dramatically

increased the sensitivity matrix calculation times. We wish to know whether that is due to

the extra parameters introduced, or whether it is due to the greater physical extent. We will

conduct an experiment next, by simply scaling up all of the buffer blocks to give the same

physical extent as this mode, without increasing the number of parameters.

7.2.4 Model 4: increasing surface coverage by scaling blocks

We will increase surface coverage by multiplying the size of all padding blocks by 1.4980.

This gives us a model file of 52 ×40 ×27, with coverage the same as Model 3 (704 km×668

km).

Sensitivity matrix calculation time was 29 minutes, and forward modelling time was 67

minutes. This is close to Model 1; clearly, then, it is the addition of a model parameter that

caused the calculation to take so long for Model 3.



44 7.2. MODEL FILE CHOICE AND OUTPUT

!!"" !#"" !$"" " $"" #"" !""

!!""

!#""

!$""

"

$""

#""

!""

%&'()*+,(-.&/012

3
&'
()
*
+
,(
-
.
&/
0
1
2

(a) Model 1. The shaded region represents those buffer blocks that will be removed in
Model 2

−300 −200 −100 0 100 200 300

−300

−200

−100

0

100

200

300

x direction (km)

y
 d

ir
e
c
ti
o
n
 (

k
m

)

(b) Model 4. The buffer block sizes in the buffer zone have been scaled by 1.4980.

Figure 7.4: Models 1 and 4 grid spacing the x-y plane. The scale is identical for both models,
showing their relative sizes. For both models, the spacing in the densely packed central region
is 1 km in both directions.



CHAPTER 7. NEW DATA SET: CARRAPATEENA REGION 45

7.3 Inversion analysis

7.3.1 Model progression

Recall the discussion in Section 2.4.1, where we discuss that the τ value imposes a restriction

on the model smoothness.

This suggests a two-stage inversion process. The first stage would be complete inversion

using a high τ parameter, forcing the program to converge on a smooth model, but one

that may not necessarily include smaller conductive bodies, giving us a relatively high RMS.

The second stage would be to lower this τ parameter, and run inversion again. This second

inversion allows the model to develop some roughness in the form of these smaller conductive

bodies, which provide a better match to our observed response, and thus a lower RMS. This

helps avoid the case where the algorithm quickly converges on unphysical models in the first

few iterations; and enables us to approach a more reasonable model than if we left complete

control up to the program. This also highlights the ill-posedness of the inverse problem, and

some of the steps required to produce a useful model.

We have decided to use a high τ value for this inversion in order to produce some pre-

liminary results. The second inversion stage will not be completed here, due to time and

budgetary constraints, but will be a focus for further research using the code we have devel-

oped.

7.3.2 Inversion

With our 7 frequency data set, a single inversion runs 8 calculations in parallel; one for

the head node running the controlling process, and the other 7 for forward modelling and

sensitivity matrix calculations of each frequency. Since our cc2.9xlarge instance can handle

16 parallel threads with no noticable performance penalty, we will run inversion on all of our

models above.

Table 7.1 shows the total time required for inversion, for each of these models. This

presents no surprises, and again we see that the time difference between Model 1 and Model

2 is to small to be considered significant.

Model number Inversion time

1 19 hours, 3 minutes.
2 13 hours, 3 minutes.
4 18 hours, 53 minutes.

Table 7.1: Time comparison for inversion (10 iterations) on each of our models. Model 3 has
been omitted.

Figure 7.5a shows the RMS and norm of the models generated by the inversion process,

at each iteration. There is no simple way to calculate the norm of the starting model without

code modification. The other values are calculated during the inversion process, by our

Fortran code adapted from the WSINV3DMT package.

We see in Figure 7.5a that the first few iterations rapidly reduce the model RMS, with

a corresponding increase in the model norm seen in Figure 7.5b. Conductive bodies closer



46 7.3. INVERSION ANALYSIS

to the surface contribute more strongly to the sensitivity matrix; thus they are discovered2in

the first few iterations and ‘fixed’ in the model.

The behaviour after iteration 3, a gradual increase in RMS, has been observed to be

common behaviour with certain models [34]. This behaviour could be related to our high τ

parameter, as making length scales too large can result in difficulties in finding any models

that fit the data [25].

At around iteration 5-6 we have a relatively low model norm, and a stable RMS, for

models 1 and 4. We see greater instability in both the norm and RMS of model 2, which was

significantly smaller in extent, and had fewer model parameters. This could be due to edge

effects, or even conductive bodies within those buffer regions. In any case, models 1 and 4

provide much more stable results.

A RMS value of 1 corresponds to a fit to within the data errors specified. RMS values of

between 2-3 are common in the literature [9] [13], and the RMS value for the final iteration

of the Paralana region (Section 6.4, Appendix C) was 3.0.

In this case, our results in Figure 7.5a show RMS values significantly higher than this,

but that is not a concern; the goal of a second inversion, conducted with our output model

as the initial model, would be to lower the RMS to better fit the measured response.

7.3.3 Analysis

Although we have not produced what could be considered a conclusive output model, we can

still examine it to look for significant features. This examination will be brief, due to the

preliminary nature of our investigation.

We will examine model 4, since that model is the largest in extent, which should help

minimise the edge effects mentioned earlier. We saw in the previous section that the model

reaches a minimum RMS at around iteration 3, and by iteration 5 the RMS has stabilised,

while still maintaining a relatively low norm. We present the output at iteration 10; the

model at iteration 5 might provide an equally good starting point for the second inversion,

however we found little visible difference between either model.

Full three dimensional plots for model 4 at iteration 10 are shown in Figure 7.6. We

know that conductive layers are more easily sensed than resistive layers[33], so we remove the

resistive structures, generating a transparent model with only the more conductive structures

visible. This shows a conductive body forming at a depth of 50-200 km. We have little physical

information to compare this with, so it will be interesting to see how these preliminary results

compare with the output from a second inversion, which is left for future work.

2We say discovered, meaning that these this reproduces the measured response, but due to the ill-posedness
of the problem this simply means that we have found one possible way of recreating the measured response.



CHAPTER 7. NEW DATA SET: CARRAPATEENA REGION 47

0 1 2 3 4 5 6 7 8 9 10
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Iteration number

M
o

d
e

l 
R

M
S

 

 

Model 1

Model 2

Model 4

(a) RMS (misfit) at the end of each iteration. The value at iteration 0 is the RMS
of the initial model.

0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

5

Iteration number

M
o

d
e

l 
n

o
rm

 

 

Model 1

Model 2

Model 4

(b) Model norm at the end of each iteration.

Figure 7.5: Model RMS (a) and norm (b) at each iteration.



48 7.3. INVERSION ANALYSIS

x

y

x = 57 kmx = -57 km

y = -57 km

y = 57 km

z

z = 190 km

(a) Opaque model with all resistivities shown. Only the outer region is visible.

x

y

x = 57 kmx = -57 km

y = -57 km

y = 57 km

z

z = 190 km

(b) The transparency of the highly resistive regions has been increased, allowing the conductive region
in the interior of the model to become visible. The scale is the same as that of (a).

Figure 7.6: Output at iteration 10 using model 4. We have used the coordinate convention
from our model and station data, where the origin is at the centre of the model file in the
x-y plane, with z = 0 at the surface and increasing downwards. The scale indicates the
magnitude of the resistivity, higher values indicate a higher resistivity. We have cropped
the model to display a restricted region with surface area extending just beyond our station
locations (Figure 7.1). This is intended to be a qualatative scale only.



49

Chapter 8

Conclusion

In many cases, 3-D MT inversion can provide a more detailed and reliable analysis of subsur-

face structures than 2-D inversion. However, the primary issue in running 3-D MT inversion

is one of excessive computational time. We have examined how a parallel implementation of

3-D inversion helps overcome this, and that cloud computing provides convenient access to

resources on demand for running this parallel calculation.

By taking advantage of Hadoop, a parallel computing framework, we were able to create

a parallel implementation of a popular 3-D inversion code package, WSINV3D. Our imple-

mentation can be easily tuned to fully utilize the parallel processing power of the hardware

that is available, from workstations with multiple cores, to clusters of computers, both local

and in the cloud.

We were able to show that Hadoop, primarily designed for high performance data pro-

cessing, is also a viable option for running computationally intensive scientific problems. We

demonstrated that Hadoop MapReduce, commonly used with interpreted languages such as

Java, is also capable of running compiled executables.

We also provided a test case for 3-D MT inversion, which exploited both the parallel

capabilities of Hadoop, and high performance computing in the Amazon cloud, in order to

generate some preliminary results on a new data set.

In writing our implementation of 3-D MT inversion on Hadoop, a primary goal was to

keep the code relating specifically to MT, completely separate from any ‘boilerplate’ code.

This provides a valuable resource for anyone wishing to use the Hadoop framework with

existing code packages that can be run in a trivially parallel manner.

This provides an excellent starting point for high performance scientific computing using

Hadoop, and magnetotelluric inversion in particular. There are some immediate pathways

for future work, which we will discuss briefly now.

8.1 Future work

Other 3-D inversion code packages

A new 3-D MT inversion code package[10] is being trialled in the Geophysics department at

the University of Adelaide. We will not discuss the technical or algorithmic details of this



50 8.1. FUTURE WORK

code, however preliminary inversions have found good results[34]. This code is designed to

be run in parallel, however initial work has found the technical challenge of using MPI to run

it in parallel to be tedious. Implementing this using Hadoop MapReduce would provide a

more stable, fault tolerant implementation than can easily be achieved using MPI, and much

of our code would be reusable, making it a significantly less challenging endeavour than what

we have achieved here. This will be investigated in the near future.

Evolutionary methods for 3D Inversion

Covariance Matrix Adaptation Evolution Strategies, or CMAES, is a type of stochastic op-

timization method belonging to the wider class of Evolutionary Algorithms. Like many

population based stochastic methods, this lends itself well to easy paralellisation.

There has been some work on using CMAES as the search technique in 3-D MT inversion

[2], which could greatly benefit from our research. The application of CMAES to 3-D MT

inversion can briefly be outlined as follows:

We start with a population of possible solutions (models) and mutate (perturb) each one

slightly slightly. This mutation is drawn from an M1 dimensional Gaussian distribution, with

zero mean, covariance matrix C, and step size (FWHM) σ. Forward modelling is then run

on each model in the population, and if the perturbation has increased our fitness (decreased

the RMS value) then this is recorded and stored in a ‘search path’, which becomes a record of

successful mutations. The covariance matrix C2 is adapted based on this search path as the

algorithm progresses, as is the step size as we near an optimal solution. The entire process

is then iterated, starting again with mutation with this new covariance matrix; for a number

k of ‘generations’.

Each member of the population can be forward modelled in parallel, furthermore, each

frequency can also be calculated in parallel, as in our work. Population sizes of many thou-

sands are possible using this method[1], giving a huge number of calculations that can be run

in parallel. At this scale the fault tolerance and load balancing provided by Hadoop become

highly beneficial, more so than in our work. This represents a viable research pathway for

extensive parallelization of 3D MT inversion.

1M= the number of model parameters
2this definition of covariance matrix adheres to the standard mathematical definition for the covariance of

an M dimensional Gaussian distribution, found in many texts such as [21]



51

Appendix A

Glossary

A.1 Computer Science terms

Source file A file containing human-readable source code. This must be com-

piled before execution. In Java, these files have the extension .java.

Compiler A program designed to convert source code to a set of instructions

that is executable by a computer.

Compiled

language

A language designed so that the compiler generates a set of in-

structions (commonly called a program, or executable) that can be

executed directly by the processor. This program must be compiled

specifically for a given operating system and processor instruction

set.

Interpreted

language

A language designed so that the compiler generates a set of instruc-

tions that can be executed by an ‘interpreter’. The interpreter is

a program that reads an interpreted language, and converts it to

instructions that run directly on a machines instruction set.

Object orientated

programming

A programming paradigm where all functions/methods belong

to an ‘object’. Objects are created (instantiated) and their

functions/methods can then be called. Different instances of a class

contain information relating to their state, and can be considered

independent objects within a program. Further discussion is beyond

the scope of this paper, and can be found in any modern introduc-

tory Computer Science text.

Java An interpreted, object orientated programming language.



52 A.2. SYMBOLS AND TERMS

JVM The Java Virtual Machine, the interpreter for the Java language.

This is implemented on most Operating Systems. Compiled Java

files can be run on any JVM without recompilation 1

Class (Java) The name of a type of ‘object’ in Java. Classes can be

instantiated, creating an instance of that class, which is an object.

Import statement (Java) A statment that tells the Java compiler to import the speci-

fied Class into the current source file, making its funciotnality avail-

able directly within the class in which the import is made.

Hot-spot This refers to a small section of code within a larger program, that

the larger program spends much of its time executing. This may

be because the code is more computationally demanding than other

sections, or it is called many times.

Hadoop An open source collection of projects, designed for large-scale high

performance computing. Includes Hadoop MapReduce and the

Hadoop Distributed File System (HDFS).

Mapper (Hadoop) A mapper is a a task that runs on a remote node, and

recieves input <key,value> pairs. Typically, we have a different

mapper for each unique key, and each of these mappers only handles

input for a single key.

Map operation (Hadoop) A map operation, or map task, is an operation carried

out by a mapper upon recieving a <key,value> pair.

Thread A set of instructions, or piece of code executing in serial. In parallel

programming, multiple threads may execute in parallel.

MPI Message Passing Interface. A low level2 standard for parallel com-

puting, which is based on explicit passing of instructions and data

between threads.

A.2 Symbols and terms

Model m A representation of the 3-D resistivity structure below the surface.

In the form of a discrete set of blocks with finite extent in each

cartesian direction.

1Providing we have a full JVM, not one with limited functionality, designed for mobile devices, for example.
2in comparison to Hadoop MapReduce



APPENDIX A. GLOSSARY 53

Forward modelling The simulation of the Earth’s electromagnetic response through a

computer program. Used to determine the theoretical response of

a model.

RMS (2.4.1) The RMS of a model is defined as the root-mean-square

of the pairwise distance between a models response F [m] and the

recorded response d.

norm (2.4.1) A measure of the smoothness of a model. Defined as

mTCm
−1m, where Cm is the model covariance.

Cm (2.4.1) Model covariance. Defined algorithmically inside the Fortran

program.

Cd (2.4.1) Data covariance. Defined algorithmically inside the Fortran

program, utilizing ‘data error’ information in input files.



54 A.2. SYMBOLS AND TERMS



55

Appendix B

Amazon web services

Amazon Web Services (AWS) have been the cloud provider of choice for our research. This

is for a number of reasons. Firstly, provide Infrastructure As A Service (IAAS), meaning we

can easily configure the virtual machines with our operating system of choice, Ubuntu Linux

Server 12.04 LTS. Our familariaty with Ubuntu makes debugging and troubleshooting much

easier. The completed Hadoop implementation can then theoretically run on any Hadoop

cluster, which might be running on a Windows based operating system (i.e. Windows Azure

Elastic MapReduce), or other operating system supported by Hadoop.

B.1 EC2 instance types

The main AWS service we will be using is EC2, which provides access to virtual machines

running our operating system of choice, and the abilty to choose the capabilities of the

underlying hardware; termed the ‘instance type’. These instance types vary in compute

capability and memory (RAM), and are divided into two main classes. The first class contains

instances designed for hosting web applications, databases, and carrying out other tasks where

the underlying hardware is not imporant.

The second is the Cluster Compute instances, designed for high performance scientific

computing. We shall exclusively focus on the highest performing cluster compute instance

type, the ‘cc2.8xlarge’, but we will provide details on another instance type ‘m1.large’ for

reference.

cc2.8xlarge

Price: $2.40/h

Amazon provide the folloiwng specifications:

60.5 GB of memory

88 EC2 Compute Units

(2 x Intel Xeon E5-2670,

eight-core "Sandy Bridge" architecture)

3370 GB of instance storage

64-bit platform



56 B.1. EC2 INSTANCE TYPES

I/O Performance: Very High (10 Gigabit Ethernet)

EBS-Optimized Available: No*

API name: cc2.8xlarge

m1.large

Price: $0.26/h

Amazon provide the folloiwng specifications:

7.5 GB memory

4 EC2 Compute Units

(2 virtual cores

with 2 EC2 Compute Units each)

850 GB instance storage

64-bit platform

I/O Performance: High

EBS-Optimized Available: 500 Mbps

API name: m1.large

Where the AWS documentation states that

One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz

2007 Opteron or 2007 Xeon processor. This is also the equivalent to an early-2006

1.7 GHz Xeon processor referenced in our original documentation.

B.1.1 Performance comparison

The C3L did much of its work using the m1.large instance type, whereas we have used the

cc2.8xlarge instance type. We conducted a simple performance test by running the forward

modelling code from WSINV3DMT on each. Both instances were running Ubuntu Server

12.04 LTS, and the Fortran code was compiled using the Intel Fortran compiler with the -O3

optimisation flag.

For later reference, the model file is called ‘highresparalana threeblobprime.0’, with the

number of model parameters 41× 41× 38.

Time taken:

• cc2.8xlarge: 965 seconds

• m1.large 1991 seconds

So the execution time was over twice as fast ont he cc2.8xlarge. But note that this is

single threaded performance, and the cc2.8xlarge can handle 16 concurrent threads, whereas

m1.large can only handle two. These factors must be taken into account when choosing the

instance type to run a calculation.



57

Appendix C

Field data: Paralana region (Run 7)

This is a well tested data set, and has served as the benchmark for testing WSNIV3DMT

against the parallel C3L implementation.

The data-set contains 53 stations, and 8 impedance tensor components for each of the 5

periods. These components correspond to the components of the impedence tensor in 2.1,

with the conversion from frequency to period used due to the convention in [30].

The station locations are plotted in Figure C.2a. The periods recorded are: T = 0.080000s,

0.511999s, 2.560000s, 16.383988s, 81.920213s. We use an approximate half-space resistivity

to calculate the skin depth for these periods, and this is plotted in Figure C.1a.

The model file has dimension 43×47×40, plotted in Figure C.2b. In all cases, an inversion

is started with a half-space model format with resistivity 10Ωm. The model grid points in

the z direction is plotted in C.1b.



58

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

45

50

Period T (s)

A
p

p
ro

x
im

a
te

 s
k
in

 d
e

p
th

 (
k
m

)

 

 

Recorded period

(a) Skin depth for the Paralana region. This has been calculated using an ap-
proximate value for the half-space of 100 Ωm.

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

Grid point number

D
e

p
th

 (
k
m

)

(b) Grid points in the z directon.

Figure C.1: Vertical direction data and model details. Plots of skin depth and model grid
points.



APPENDIX C. FIELD DATA: PARALANA REGION (RUN 7) 59

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x direction (km)

y
 d

ir
e

c
ti
o

n
 (

k
m

)

(a) Station locations for the Paralana region.

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

x direction (km)

y
 d

ir
e

c
ti
o

n
 (

k
m

)

(b) Model grid in the horizontal plane. Grid size in the central region is 750 m in
the x and y directions.

Figure C.2: Data and model details for the Paralana region data set.



60



61

Appendix D

Additional MT information

D.1 3-D MT inversion, literature review

An excellent overview of the 3D MT inversion algorithms can be found in [27]. We will

present a summary here.

The 2D Occam inversion method is introduced in [7], and Siripunvaraporn et al publish

an efficient 2D Occam approach that works in the data-space, rather than the model space, in

paper [25]. In the data space, many calculations and representation matrices depend on the

number of data parameters, rather than the number of model parameters. Magnetotelluric

inverse problems, in particular 3-D inversion, usually have far more model parameters than

we do data values which the model parameters must satisfy; so data-space methods can be

of huge benefit in reducing computational time, and the size of the matrices that must be

stored in memory during calculation.

Siripunvaraporn et al extend the 2D data-space Occam variant to the 3 dimensional case

in [30]. This has been released in a Fortran code package named WSINV3DMT, and was

made freely available to the MT research community in 2006 [29]. This is our focus. A

reference guide for this code package also provided in [26].

As mentioned, the Occam data-space approach used allows us to reduce the size of the

system of equations that must be solved from m ×m to n × n, where m is the number of

model parameters, and n is the number of data parameters. However, we still need to store

the n ×m sensitivity matrix in memory, which can be on the order of tens of gigabytes for

large models (in the sense of number of parameters) and data.

Several improvements have since been published; and although they will not be our focus,

it is worth mentioning them here for completeness. A conjugate gradient approach is intro-

duced for 2D inversion in [28], that allows the explicit formulation of the sensitivity matrix to

be avoided. This is extended to the 3D case in paper [31]. Modifications to WSINV3DMT to

handle the vertical magnetic field transfer function, and also an algorithm for a basic parallel

implementation, are introduced in [29]. However, as mentioned, the code base for the original

WSINV3DMT is freely available, and the amount of code is significant (≈ 20, 000 lines of

Fortran 77). We wish to stick with this code base, so these approaches will not be mentioned.



62 D.2. RULES OF THUMB FOR MODEL SELECTION

D.2 Rules of thumb for model selection

There are a few rules of thumb to aid in choosing a starting model [34].

1. Usually block size should increase with depth d as S ∝ d1.5. This is in account with

the poorer resolution of MT at depth.

2. Usually the first layer is roughly 1/10th of the skin depth of the shortest period (as-

suming roughly 10 Ωm near surface).

3. A good starting point to avoid edge effects is usually 1000 km× 1000 km× 1000 km

model. Edge sizes could be reduced to 700 km.

4. The blocks should extend to several times the expected skin depth away from the edge,

and away from the surface. This may or may not be in accordange with 3.

5. When we have no idea of subsurface structure we usually go for a half-space model.

6. Setting it to a half-space resistivity of 10 Ohm/Metre (roughly that of the silt) allows

the inversion code to do what it does best, fix structure on the surface first because

it has a higher sensitivity. Then as iterations progress, surface structure is fixed and

deeper structure develops variations.



63

Appendix E

Hadoop configuration

While using Hadoop is simple, installing and configuring it can be complicated; which is why

Hadoop ‘services’ such as AWS Elastic MapReduce, and Hadoop on Azure are so convenient.

There are plenty of resources for setting up a Hadoop cluster manually, for example [35].

At the time of writing, Yahoo contribues to Hadoop extensively, and also provides excellent

documentation which can be found through a simple web search.

However, one configuration setting that we would like to explicitly note here, is the

configuration file for Hadoop MapReduce that determines how the Map and Reduce tasks

behave. This determines important behavour, such as the number of tasks per node, and the

timeout we wish to specify before a task (Map or Reduce) is considered failed. This is done

in a configuration file mapred-site.xml, and an example is given in Listing E.1.



64

Listing E.1: mapred-site.xml example

1 <?xml version="1.0"?>
2 <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
3

4 <!-- Put site-specific property overrides in this file. -->
5 <configuration>
6 <property>
7 <name>mapred.job.tracker</name>
8 <value>localhost:9001</value>
9 </property>

10

11 <property>
12 <name>mapred.tasktracker.map.tasks.maximum</name>
13 <value>15</value>
14 <description>The number of milliseconds before a task will be
15 terminated if it neither reads an input, writes
16 an output, nor updates its status string.
17 </description>
18 </property>
19

20 <property>
21 <name>mapred.task.timeout</name>
22 <value>36000000</value>
23 <description>The number of milliseconds before a task will be
24 terminated if it neither reads an input, writes
25 an output, nor updates its status string.
26 </description>
27 </property>
28

29 </configuration>



65

Appendix F

Fortran 77

F.1 Compilation

The instructions here are applicable to the intel Fortran compiler, with hadoop running in

Pseudo-distributed mode. The complete compilation command is:

ifort -heap-arrays 1024 -O2 -shared-intel -mcmodel=medium

The ‘heap-arrays’ is not always necessary, particarly for small model sizes, and is explained

below; as are the other flags.

F.2 Memory issues

The Intel Fortran compiler allocates automatic arrays on the stack, while the GNU Fortran

compiler allocated them on the heap. This means that in some cases, for large models or

data, programs compiled with the Intel compiler may run out of stack space and crash with

an error resembling:

forrtl: severe (174): SIGSEGV, segmentation fault occurred

Increasing the stack size with the command ‘ulimit’ failed to correct the problem on

Ubuntu 12.0 LTS.

A workaroud when using the Intel compiler is to use the -heap-arrays option, however

as of the Version 13.0 release, there is a bug that causes a memory leak with this switch.

Intel case number: DPD200235943. This means that the memory footprint of the program

will gradually increase, and even a modest size model will run out of memory in under 5

iterations.

It is likely that Intel will release a fix for this soon. Explicitly allocating the arrays, by

declaring them allocatable, should cause them to be allocated on the heap and thus we would

not need the -heap-arrays command. However, since this issue was discovered towards the

end of the project (and explains some of the issues that occured along the way), this is left

for future work.

We will attempt to use the Intel compiler except where the stack size becomes an issue.



66 F.3. CONFIGURING THE ENVIRONMENT FOR IFORT

F.3 Configuring the environment for ifort

After installing ifort on a Ubuntu system, the command

source /opt/intel/bin/ifortvars.sh intel64

must be run in order to put certain Intel Fortran libraries on the path. It needs to be run

before any binaries compiled by ifort without static linking (-shared-intel -mcmodel=medium)

will run. It must be run whenever a new bash shell is started. This presents problems when

running the Fortran files within Hadoop. When running in Pseudo-Distributed mode, it can

be overcome by adding the line above to the file:

hadoop/conf/hadoop-env.sh

When running in fully-distributed mode, it would be necessary to install the ifort libraries,

and similarly declare the variables in each of the config files; however this was not tested.



67

Bibliography

[1] Bradley Alexander. Private communication, June 2012.

[2] Bradley Alexander, Stephan Thiel, and Jared Peacock. Application of evolutionary

methods to 3d geoscience modelling. In Proceedings of the fourteenth international con-

ference on Genetic and evolutionary computation conference, GECCO ’12, pages 1039–

1046, New York, NY, USA, 2012. ACM.

[3] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan Muthukkaruppan,

Nicolas Spiegelberg, Hairong Kuang, Karthik Ranganathan, Dmytro Molkov, Aravind

Menon, Samuel Rash, Rodrigo Schmidt, and Amitanand Aiyer. Apache hadoop goes re-

altime at facebook. In Proceedings of the 2011 ACM SIGMOD International Conference

on Management of data, SIGMOD ’11, pages 1071–1080, New York, NY, USA, 2011.

ACM.

[4] Alan D. Chave and David J. Thomson. Bounded influence magnetotelluric response

function estimation. Geophysical Journal International, 157(3):988–1006, 2004.

[5] Steven C. Constable, Robert L. Parker, and Catherine G. Constable. Occam’s inversion:

A practical algorithm for generating smooth models from electromagnetic sounding data.

Geophysics, 52(3):289–300, 1987.

[6] J.K. Costain and C. Çoruh. Basic Theory Of Exploration Seismology. Handbook of

Geophysical Exploration: Seismic Exploration. Elsevier, 2004.

[7] CD de Groot-Hedlin and SC Constable. Occam’s inversion to generate smooth, two-

dimensional models from magnetotelluric data. Geophysics, 55(12):1613–1624, 1990.

[8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large

clusters. In Proceedings of the 6th conference on Symposium on Opearting Systems

Design & Implementation - Volume 6, OSDI’04, pages 10–10, Berkeley, CA, USA, 2004.

USENIX Association.

[9] H. DONG, G. YE, W. WEI, and S. JIN. 3d inversion testing of sparse field data using

wsinv3dmt code.

[10] Gary D. Egbert and Anna Kelbert. Computational recipes for electromagnetic inverse

problems. Geophysical Journal International, 189(1):251–267, 2012.

[11] SRL GEOSYSTEM. Winglink R© user’s guide. GEOSYSTEM SRL, Milan, Italy, 2008.



68 BIBLIOGRAPHY

[12] Philip Mackey (Program Manager) Glenn Moloney (Project Director). National ere-

search collaobration tools and resources, draft final project plan, May 2011.

[13] W. Heise, T. G. Caldwell, H. M. Bibby, and S. C. Bannister. Three-dimensional mod-

elling of magnetotelluric data from the rotokawa geothermal field, taupo volcanic zone,

new zealand. Geophysical Journal International, 173(2):740–750, 2008.

[14] N. Hoffmann, H. Jödicke, P. Gerling, et al. The distribution of pre-westphalian source

rocks in the north german basin: evidence from magnetotelluric and geochemical data.

Netherlands Journal of Geosciences (Geologie en Mijnbouw), 80(1), 2001.

[15] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing. Technical report,

July 2009.

[16] Max Moorkamp, Björn Heincke, Marion Jegen, Alan W. Roberts, and Richard W. Hobbs.

A framework for 3-d joint inversion of mt, gravity and seismic refraction data. Geophys-

ical Journal International, 184(1):477–493, 2011.

[17] J. C. Mudge. Private communication, November 2012.

[18] J.C. Mudge, P. Chandrasekhar, G.S. Heinson, and S. Thiel. Evolving inversion methods

in geophysics with cloud computing - a case study of an escience collaboration. In E-

Science (e-Science), 2011 IEEE 7th International Conference on, pages 119 –125, Dec.

2011.

[19] Gregory A. Newman, Stephan Recher, Bülent Tezkan, and Fritz M. Neubauer. 3d inver-

sion of a scalar radio magnetotelluric field data set. Geophysics, 68(3):791–802, 2003.

[20] K.H. Olsen. Continental Rifts: Evolution, Structure, Tectonics: Evolution, Structure,

Tectonics. Developments in Geotectonics. Elsevier Science, 1995.

[21] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes 3rd

Edition: The Art of Scientific Computing. Cambridge University Press, 2007.

[22] N. Rawlinson and BR Goleby. Seismic imaging of continents and their margins: New

research at the confluence of active and passive seismology. Tectonophysics, 2012.

[23] L. Shklar and R. Rosen. Web Application Architecture: Principles, Protocols and Prac-

tices. John Wiley & Sons, 2003.

[24] Fiona Simpson and Karsten Bahr. Practical magnetotellurics. Cambridge University

Press, 2005.

[25] W. Siripunvaraporn and G. Egbert. An efficient data-subspace inversion method for 2-D

magnetotelluric data. Geophysics, 65:791, 2000.

[26] Weerachai Siripunvaraporn. Wsinv3dmt version 1.0.0 for single processor machine: User

manual. User Manual, 2006.



BIBLIOGRAPHY 69

[27] Weerachai Siripunvaraporn. Three-dimensional magnetotelluric inversion: An introduc-

tory guide for developers and users. Surveys in Geophysics, pages 1–23, 2011.

[28] Weerachai Siripunvaraporn and Gary Egbert. Data space conjugate gradient inversion

for 2-d magnetotelluric data. Geophysical Journal International, 170(3):986–994, 2007.

[29] Weerachai Siripunvaraporn and Gary Egbert. Wsinv3dmt: Vertical magnetic field trans-

fer function inversion and parallel implementation. Physics of the Earth and Planetary

Interiors, 173:317 – 329, 2009.

[30] Weerachai Siripunvaraporn, Gary Egbert, Yongwimon Lenbury, and Makoto Uyeshima.

Three-dimensional magnetotelluric inversion: data-space method. Physics of the Earth

and Planetary Interiors, 150:3 – 14, 2005.

[31] Weerachai Siripunvaraporn and Weerachai Sarakorn. An efficient data space conjugate

gradient occam’s method for three-dimensional magnetotelluric inversion. Geophysical

Journal International, 186(2):567–579, 2011.

[32] Edward Stewart. Leveraging the nvidia cuda blas in the imsl fortran library. Technical

report, Rogue Wave Software, 2010.

[33] S. Thiel. Modelling and Inversion of Magnetotelluric Data for 2-D and 3-D Lithospheric

Structure, with Application to Obducted and Subducted Terranes. University of Adelaide,

School of Earth and Environmental Sciences, Discipline of Geology and Geophysics, 2008.

[34] S. Thiel. Private communication, November 2012.

[35] T. White. Hadoop: The Definitive Guide. Oreilly and Associate Series. Oreilly & Asso-

ciates Incorporated, 2012.

[36] Qibin Xiao, Xinping Cai, Xingwang Xu, Guanghe Liang, and Baolin Zhang. Application

of the 3d magnetotelluric inversion code in a geologically complex area. Geophysical

Prospecting, 58(6):1177–1192, 2010.


